19 Commits

Author SHA1 Message Date
2cbbe090ed another uart demonstration: uart echo module 2021-05-30 15:19:08 -05:00
99a8661faa calib delay? 2020-12-16 15:01:39 -06:00
e7a23afcb0 use 3-bit transmit state, add header/footer around data, skip debounce for now 2020-11-02 15:49:11 -06:00
45f845f671 can transmit data out, but in wrong order ... 2020-11-01 09:30:46 -06:00
aeaf18c2d4 skip debounce in simulation 2020-10-30 17:52:42 -05:00
ec6b3431be uart tx using zipcpu tut5 code 2020-10-27 14:50:10 -05:00
568775a169 indent 2020-10-27 10:39:56 -05:00
5a58da34af move debouncing parts to top module 2020-10-27 07:50:25 -05:00
92f059ab54 use only top bits of the data to display 2020-10-26 22:45:17 -05:00
124d1fff63 add debouncing buttons before start/stop 2020-10-26 22:33:44 -05:00
c6cc9bc99f change divison factor in clk_gen for 100 MHz 2020-10-26 22:00:42 -05:00
61bab9153d hack to use PLL in synthesizing, and fake 100 MHz on verilator 2020-10-26 21:58:13 -05:00
f36bb84065 add pin photos 2020-10-26 18:10:42 -05:00
a0b211338c working stop watch 2020-10-26 17:35:52 -05:00
4886fad4b2 tdc state machine 2020-10-26 16:06:00 -05:00
74dd3fb1d8 resume with the TDC 2020-10-25 22:49:43 -05:00
240b6e26d4 minimal change from https://zipcpu.com/tutorial/ex-04-reqwalker.tgz 2020-10-25 22:09:23 -05:00
3a9c0343c1 use 1 Hz clock for visible walking 2020-10-25 21:38:28 -05:00
4e192d5d70 remove strobe parts since it is on its own branch 2020-10-25 20:37:32 -05:00
40 changed files with 2099 additions and 139 deletions

View File

@@ -5,7 +5,25 @@ module clk_gen(
output wire o_clk
);
assign o_clk = i_clk;
// assign o_clk = i_clk;
reg [31:0] counter;
reg buf_clk;
parameter CLK_RATE_HZ = 12_000_000;
initial begin
counter = 0;
buf_clk = 0;
end
assign o_clk = buf_clk;
always @(posedge i_clk) begin
if (counter >= CLK_RATE_HZ/2 - 1) begin
counter <= 0;
buf_clk <= ~buf_clk;
end
else
counter <= counter + 1;
end
endmodule
// Local Variables:

View File

@@ -8,18 +8,17 @@ module top(i_clk, o_led, o_led_row_0, i_request, o_busy);
input wire i_request;
output wire o_busy;
wire clk_12MHz;
wire clk_1Hz;
clk_gen clk_gen_0 (/*autoinst*/
// Outputs
.o_clk (clk_12MHz),
.o_clk (clk_1Hz),
// Inputs
.i_clk (i_clk));
reg [WIDTH-1:0] counter;
reg [3:0] state;
reg [5:0] led_buf; // output buffer, take into account the icefun use active low LED
// reg strobe;
reg busy_buf;
wire req_buf;
@@ -30,30 +29,26 @@ module top(i_clk, o_led, o_led_row_0, i_request, o_busy);
initial begin
led_buf = 6'h0;
// {strobe, counter} = 0;
counter = 0;
state = 0;
busy_buf = 0;
end
always @(posedge clk_12MHz) begin
always @(posedge clk_1Hz) begin
if (!busy_buf && req_buf)
busy_buf <= 1;
else
busy_buf <= (state != 4'h0);
end
// counter and strobe run only during busy signal is High
always @(posedge clk_12MHz) begin
always @(posedge clk_1Hz) begin
if (busy_buf)
counter <= counter + 1'b1;
// {strobe, counter} <= counter + 1'b1;
else
// {strobe, counter} <= 0;
counter <= 0;
end
// state change once strobe starts
always @(posedge clk_12MHz) begin
always @(posedge clk_1Hz) begin
if (!busy_buf && req_buf)
state <= 4'h1;
else if (state >= 4'hB)
@@ -63,62 +58,61 @@ module top(i_clk, o_led, o_led_row_0, i_request, o_busy);
end
// fsm for led_buf
always @(posedge clk_12MHz) begin
// if (strobe)
case (state)
4'h1: led_buf <= 6'b00_0001;
4'h2: led_buf <= 6'b00_0010;
4'h3: led_buf <= 6'b00_0100;
4'h4: led_buf <= 6'b00_1000;
4'h5: led_buf <= 6'b01_0000;
4'h6: led_buf <= 6'b10_0000;
4'h7: led_buf <= 6'b01_0000;
4'h8: led_buf <= 6'b00_1000;
4'h9: led_buf <= 6'b00_0100;
4'ha: led_buf <= 6'b00_0010;
4'hb: led_buf <= 6'b00_0001;
default: led_buf <= 6'b00_0000;
endcase
end
`ifdef FORMAL
// state should never go beyond 13
always @(*)
assert(state <= 4'hd);
// I prefix all of the registers (or wires) I use in formal
// verification with f_, to distinguish them from the rest of the
// project.
reg f_valid_output;
always @(*)
begin
// Determining if the output is valid or not is a rather
// complex task--unusual for a typical assertion. Here, we'll
// use f_valid_output and a series of _blocking_ statements
// to determine if the output is one of our valid outputs.
f_valid_output = 0;
case(led_buf)
8'h01: f_valid_output = 1'b1;
8'h02: f_valid_output = 1'b1;
8'h04: f_valid_output = 1'b1;
8'h08: f_valid_output = 1'b1;
8'h10: f_valid_output = 1'b1;
8'h20: f_valid_output = 1'b1;
8'h40: f_valid_output = 1'b1;
8'h80: f_valid_output = 1'b1;
always @(posedge clk_1Hz) begin
case (state)
4'h1: led_buf <= 6'b00_0001;
4'h2: led_buf <= 6'b00_0010;
4'h3: led_buf <= 6'b00_0100;
4'h4: led_buf <= 6'b00_1000;
4'h5: led_buf <= 6'b01_0000;
4'h6: led_buf <= 6'b10_0000;
4'h7: led_buf <= 6'b01_0000;
4'h8: led_buf <= 6'b00_1000;
4'h9: led_buf <= 6'b00_0100;
4'ha: led_buf <= 6'b00_0010;
4'hb: led_buf <= 6'b00_0001;
default: led_buf <= 6'b00_0000;
endcase
assert(f_valid_output);
// SV supports a $onehot function which we could've also used
// depending upon your version of Yosys. This function will
// be true if one, and only one, bit in the argument is true.
// Hence we might have said
// assert($onehot(o_led));
// and avoided this case statement entirely.
end
`endif
`ifdef FORMAL
// state should never go beyond 13
always @(*)
assert(state <= 4'hd);
// I prefix all of the registers (or wires) I use in formal
// verification with f_, to distinguish them from the rest of the
// project.
reg f_valid_output;
always @(*)
begin
// Determining if the output is valid or not is a rather
// complex task--unusual for a typical assertion. Here, we'll
// use f_valid_output and a series of _blocking_ statements
// to determine if the output is one of our valid outputs.
f_valid_output = 0;
case(led_buf)
8'h01: f_valid_output = 1'b1;
8'h02: f_valid_output = 1'b1;
8'h04: f_valid_output = 1'b1;
8'h08: f_valid_output = 1'b1;
8'h10: f_valid_output = 1'b1;
8'h20: f_valid_output = 1'b1;
8'h40: f_valid_output = 1'b1;
8'h80: f_valid_output = 1'b1;
endcase
assert(f_valid_output);
// SV supports a $onehot function which we could've also used
// depending upon your version of Yosys. This function will
// be true if one, and only one, bit in the argument is true.
// Hence we might have said
// assert($onehot(o_led));
// and avoided this case statement entirely.
end
`endif
endmodule

72
serialTx-tut5/Makefile Normal file
View File

@@ -0,0 +1,72 @@
SIM_TARGET = build/top
BIN_TARGET = build/top.bin
PCF = constraints/iceFUN.pcf
TIMING = constraints/timing.py
YOSYS = yosys
PNR = nextpnr-ice40
IPACK = icepack
BURN = iceFUNprog
SBY = sby
VERILATOR=verilator
VERILATOR_ROOT ?= $(shell bash -c 'verilator -V|grep VERILATOR_ROOT | head -1 | sed -e "s/^.*=\s*//"')
VINC := $(VERILATOR_ROOT)/include
RTL_SRC := $(wildcard rtl/*.v)
SIM_SRC := $(wildcard sim/*.cc)
FV_SRC := sim/top.sby
BUILD_DIR := ./build
define colorecho
@tput setaf 6
@echo $1
@tput sgr0
endef
.PHONY: all burn fv clean sim
all: $(SIM_TARGET) $(BIN_TARGET)
$(BUILD_DIR)/Vtop.cc: $(RTL_SRC)
$(call colorecho, "Running verilator")
mkdir -p $(BUILD_DIR)
$(VERILATOR) --trace -Wall -cc $^ --top-module top -GWIDTH=10\
--Mdir $(BUILD_DIR) --timescale-override 10ns/1ns
$(BUILD_DIR)/Vtop__ALL.a: $(BUILD_DIR)/Vtop.cc
make --no-print-directory -C $(BUILD_DIR) -f Vtop.mk
# std=c++11 flag is needed as of verilator v4.100
$(SIM_TARGET): $(SIM_SRC) $(BUILD_DIR)/Vtop__ALL.a
$(call colorecho, "Compiling simulation executable")
g++ -I$(VINC) -I$(BUILD_DIR) -std=c++14 $(VINC)/verilated.cpp\
$(VINC)/verilated_vcd_c.cpp $^ -o $@
echo "Run simulation with ./$(SIM_TARGET)"
$(BUILD_DIR)/top.json: $(RTL_SRC)
$(call colorecho, "Synthesizing ...")
mkdir -p $(BUILD_DIR)
$(YOSYS) -p "synth_ice40 -top top -json build/top.json" -q $^
$(BIN_TARGET): $(BUILD_DIR)/top.json $(PCF) $(TIMING)
$(call colorecho, "Routing and building binary stream ...")
$(PNR) -r --hx8k --json $< --package cb132 \
--asc $(BUILD_DIR)/top.asc --opt-timing --pcf $(PCF) \
--pre-pack $(TIMING) -l $(BUILD_DIR)/pnr_report.txt -q
$(IPACK) $(BUILD_DIR)/top.asc $@
$(call colorecho, "Done!")
sim: $(SIM_TARGET)
$(call colorecho, "Running simulation")
$(SIM_TARGET) && open $(BUILD_DIR)/waveform.vcd
burn: $(BIN_TARGET)
$(BURN) $<
fv:
$(SBY) -f $(FV_SRC) -d $(BUILD_DIR)/fv
clean:
rm -rf $(BUILD_DIR)
$V.SILENT:

View File

@@ -0,0 +1,8 @@
# For iceFUN board
set_io --warn-no-port i_clk P7
# set_io --warn-no-port i_start_tx C11
# set_io --warn-no-port i_stopN A11
# set_io --warn-no-port i_resetN C6
set_io --warn-no-port o_uart_tx A3

View File

@@ -0,0 +1 @@
ctx.addClock("i_clk", 100)

View File

@@ -0,0 +1,31 @@
`default_nettype none
// dummy clock generator, should be replaced by a PLL clock gen eventually
module clk_gen #(parameter DIVISION=22)(
input wire i_clk,
output wire o_clk_100MHz,
output wire o_div_clk
);
/* verilator lint_off PINCONNECTEMPTY */
/* verilator lint_off PINMISSING */
reg [DIVISION-1:0] counter = 0;
`ifdef VERILATOR
always @(posedge i_clk) begin
counter <= counter + 1;
end
assign o_clk_100MHz = i_clk;
`else
pll_100MHz pll0(.i_clk(i_clk), .o_clk_100MHz(o_clk_100MHz), .o_pll_locked());
always @(posedge o_clk_100MHz) begin
counter <= counter + 1;
end
`endif
assign o_div_clk = counter[DIVISION-1];
/* verilator lint_on PINCONNECTEMPTY */
/* verilator lint_on PINMISSING */
endmodule
// Local Variables:
// verilog-library-directories:(".." "./rtl" ".")
// End:

View File

@@ -0,0 +1,40 @@
/**
* PLL configuration
*
* This Verilog module was generated automatically
* using the icepll tool from the IceStorm project.
* Use at your own risk.
*
* Given input frequency: 12.000 MHz
* Requested output frequency: 100.000 MHz
* Achieved output frequency: 100.500 MHz
*/
// this module is skipped by verilator
`ifdef VERILATOR
`else
module pll_100MHz(
input i_clk,
output o_clk_100MHz,
output o_pll_locked
);
wire clk_int;
SB_PLL40_CORE #(
.FEEDBACK_PATH("SIMPLE"),
.DIVR(4'b0000), // DIVR = 0
.DIVF(7'b1000010), // DIVF = 66
.DIVQ(3'b011), // DIVQ = 3
.FILTER_RANGE(3'b001) // FILTER_RANGE = 1
) uut (
.LOCK(o_pll_locked),
.RESETB(1'b1),
.BYPASS(1'b0),
.REFERENCECLK(i_clk),
.PLLOUTCORE(clk_int)
);
SB_GB sbGlobalBuffer_inst( .USER_SIGNAL_TO_GLOBAL_BUFFER(clk_int),
.GLOBAL_BUFFER_OUTPUT(o_clk_100MHz));
endmodule
`endif

85
serialTx-tut5/rtl/top.v Normal file
View File

@@ -0,0 +1,85 @@
`default_nettype none
module top #(parameter WIDTH=24)(
input wire i_clk,
output wire o_uart_tx
);
parameter CLOCK_RATE_HZ = 100_000_000; // 100MHz clock
parameter BAUD_RATE = 115_200; // 115.2 KBaud
parameter INITIAL_UART_SETUP = (CLOCK_RATE_HZ/BAUD_RATE);
wire clk_100MHz;
/* verilator lint_off PINMISSING */
clk_gen #(.DIVISION(26)) clk_gen0 (.o_clk_100MHz (clk_100MHz), .i_clk (i_clk));
/* verilator lint_on PINMISSING */
reg tx_restart = 0;
reg [27:0] hz_counter;
initial hz_counter = 28'h16;
always @(posedge clk_100MHz) begin
if (hz_counter == 0)
hz_counter <= CLOCK_RATE_HZ - 1'b1;
else
hz_counter <= hz_counter - 1'b1;
end
always @(posedge clk_100MHz)
tx_restart <= (hz_counter == 1);
wire tx_busy;
reg tx_stb;
reg [3:0] tx_index;
reg [7:0] tx_data;
initial tx_index = 4'h0;
always @(posedge clk_100MHz) begin
if ((tx_stb)&&(!tx_busy))
tx_index <= tx_index + 1'b1;
end
always @(posedge clk_100MHz) begin
case(tx_index)
4'h0: tx_data <= "H";
4'h1: tx_data <= "e";
4'h2: tx_data <= "l";
4'h3: tx_data <= "l";
//
4'h4: tx_data <= "o";
4'h5: tx_data <= ",";
4'h6: tx_data <= " ";
4'h7: tx_data <= "W";
//
4'h8: tx_data <= "o";
4'h9: tx_data <= "r";
4'ha: tx_data <= "l";
4'hb: tx_data <= "d";
//
4'hc: tx_data <= "!";
4'hd: tx_data <= " ";
4'he: tx_data <= "\n";
4'hf: tx_data <= "\r";
//
endcase
end
// tx_stb is a request to send a character.
initial tx_stb = 1'b0;
always @(posedge clk_100MHz) begin
if (&tx_restart)
tx_stb <= 1'b1;
else if ((tx_stb)&&(!tx_busy)&&(tx_index==4'hf))
tx_stb <= 1'b0;
end
//
// Instantiate a serial port module here
//
txuart #(INITIAL_UART_SETUP[23:0])
transmitter(clk_100MHz, tx_stb, tx_data, o_uart_tx, tx_busy);
endmodule
// Local Variables:
// verilog-library-directories:(".." "./rtl" ".")
// End:

267
serialTx-tut5/rtl/txuart.v Normal file
View File

@@ -0,0 +1,267 @@
////////////////////////////////////////////////////////////////////////////////
//
// Filename: txuart.v
//
// Project: Verilog Tutorial Example file
//
// Purpose: Transmit outputs over a single UART line. This particular UART
// implementation has been extremely simplified: it does not handle
// generating break conditions, nor does it handle anything other than the
// 8N1 (8 data bits, no parity, 1 stop bit) UART sub-protocol.
//
// To interface with this module, connect it to your system clock, and
// pass it the byte of data you wish to transmit. Strobe the i_wr line
// high for one cycle, and your data will be off. Wait until the 'o_busy'
// line is low before strobing the i_wr line again--this implementation
// has NO BUFFER, so strobing i_wr while the core is busy will just
// get ignored. The output will be placed on the o_txuart output line.
//
// There are known deficiencies in the formal proof found within this
// module. These have been left behind for you (the student) to fix.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Written and distributed by Gisselquist Technology, LLC
//
// This program is hereby granted to the public domain.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
////////////////////////////////////////////////////////////////////////////////
//
//
`default_nettype none
//
//
//
module txuart(i_clk, i_wr, i_data, o_uart_tx, o_busy);
parameter [23:0] CLOCKS_PER_BAUD = 24'd868;
input wire i_clk;
input wire i_wr;
input wire [7:0] i_data;
// And the UART output line itself
output wire o_uart_tx;
// A line to tell others when we are ready to accept data. If
// (i_wr)&&(!o_busy) is ever true, then the core has accepted a byte
// for transmission.
output reg o_busy;
// Define several states
localparam [3:0] START = 4'h0,
BIT_ZERO = 4'h1,
BIT_ONE = 4'h2,
BIT_TWO = 4'h3,
BIT_THREE = 4'h4,
BIT_FOUR = 4'h5,
BIT_FIVE = 4'h6,
BIT_SIX = 4'h7,
BIT_SEVEN = 4'h8,
LAST = 4'h8,
IDLE = 4'hf;
reg [23:0] counter;
reg [3:0] state;
reg [8:0] lcl_data;
reg baud_stb;
// o_busy
//
// This is a register, designed to be true is we are ever busy above.
// originally, this was going to be true if we were ever not in the
// idle state. The logic has since become more complex, hence we have
// a register dedicated to this and just copy out that registers value.
initial o_busy = 1'b0;
initial state = IDLE;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
// Immediately start us off with a start bit
{ o_busy, state } <= { 1'b1, START };
else if (baud_stb)
begin
if (state == IDLE) // Stay in IDLE
{ o_busy, state } <= { 1'b0, IDLE };
else if (state < LAST) begin
o_busy <= 1'b1;
state <= state + 1'b1;
end else // Wait for IDLE
{ o_busy, state } <= { 1'b1, IDLE };
end
// lcl_data
//
// This is our working copy of the i_data register which we use
// when transmitting. It is only of interest during transmit, and is
// allowed to be whatever at any other time. Hence, if o_busy isn't
// true, we can always set it. On the one clock where o_busy isn't
// true and i_wr is, we set it and o_busy is true thereafter.
// Then, on any baud_stb (i.e. change between baud intervals)
// we simple logically shift the register right to grab the next bit.
initial lcl_data = 9'h1ff;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
lcl_data <= { i_data, 1'b0 };
else if (baud_stb)
lcl_data <= { 1'b1, lcl_data[8:1] };
// o_uart_tx
//
// This is the final result/output desired of this core. It's all
// centered about o_uart_tx. This is what finally needs to follow
// the UART protocol.
//
assign o_uart_tx = lcl_data[0];
// All of the above logic is driven by the baud counter. Bits must last
// CLOCKS_PER_BAUD in length, and this baud counter is what we use to
// make certain of that.
//
// The basic logic is this: at the beginning of a bit interval, start
// the baud counter and set it to count CLOCKS_PER_BAUD. When it gets
// to zero, restart it.
//
// However, comparing a 28'bit number to zero can be rather complex--
// especially if we wish to do anything else on that same clock. For
// that reason, we create "baud_stb". baud_stb is
// nothing more than a flag that is true anytime baud_counter is zero.
// It's true when the logic (above) needs to step to the next bit.
// Simple enough?
//
// I wish we could stop there, but there are some other (ugly)
// conditions to deal with that offer exceptions to this basic logic.
//
// 1. When the user has commanded a BREAK across the line, we need to
// wait several baud intervals following the break before we start
// transmitting, to give any receiver a chance to recognize that we are
// out of the break condition, and to know that the next bit will be
// a stop bit.
//
// 2. A reset is similar to a break condition--on both we wait several
// baud intervals before allowing a start bit.
//
// 3. In the idle state, we stop our counter--so that upon a request
// to transmit when idle we can start transmitting immediately, rather
// than waiting for the end of the next (fictitious and arbitrary) baud
// interval.
//
// When (i_wr)&&(!o_busy)&&(state == IDLE) then we're not only in
// the idle state, but we also just accepted a command to start writing
// the next word. At this point, the baud counter needs to be reset
// to the number of CLOCKS_PER_BAUD, and baud_stb set to zero.
//
// The logic is a bit twisted here, in that it will only check for the
// above condition when baud_stb is false--so as to make
// certain the STOP bit is complete.
initial baud_stb = 1'b1;
initial counter = 0;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
begin
counter <= CLOCKS_PER_BAUD - 1'b1;
baud_stb <= 1'b0;
end else if (!baud_stb)
begin
baud_stb <= (counter == 24'h01);
counter <= counter - 1'b1;
end else if (state != IDLE)
begin
counter <= CLOCKS_PER_BAUD - 1'b1;
baud_stb <= 1'b0;
end
//
//
// FORMAL METHODS
//
//
//
`ifdef FORMAL
`ifdef TXUART
`define ASSUME assume
`else
`define ASSUME assert
`endif
// Setup
reg f_past_valid;
initial f_past_valid = 1'b0;
always @(posedge i_clk)
f_past_valid <= 1'b1;
// Any outstanding request that was busy on the last cycle,
// should remain busy on this cycle
initial `ASSUME(!i_wr);
always @(posedge i_clk)
if ((f_past_valid)&&($past(i_wr))&&($past(o_busy)))
begin
`ASSUME(i_wr == $past(i_wr));
`ASSUME(i_data == $past(i_data));
end
//////////////////////////////////
//
// The contract
//
//////////////////////////////////
reg [7:0] fv_data;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
fv_data <= i_data;
always @(posedge i_clk)
case(state)
IDLE: assert(o_uart_tx == 1'b1);
START: assert(o_uart_tx == 1'b0);
BIT_ZERO: assert(o_uart_tx == fv_data[0]);
BIT_ONE: assert(o_uart_tx == fv_data[1]);
BIT_TWO: assert(o_uart_tx == fv_data[2]);
BIT_THREE: assert(o_uart_tx == fv_data[3]);
BIT_FOUR: assert(o_uart_tx == fv_data[4]);
BIT_FIVE: assert(o_uart_tx == fv_data[5]);
BIT_SIX: assert(o_uart_tx == fv_data[6]);
BIT_SEVEN: assert(o_uart_tx == fv_data[7]);
default: assert(0);
endcase
//////////////////////////////////
//
// Internal state checks
//
//////////////////////////////////
//
// Check the baud counter
//
// The baud_stb needs to be identical to our counter being zero
always @(posedge i_clk)
assert(baud_stb == (counter == 0));
always @(posedge i_clk)
if ((f_past_valid)&&($past(counter != 0)))
assert(counter == $past(counter - 1'b1));
always @(posedge i_clk)
assert(counter < CLOCKS_PER_BAUD);
always @(posedge i_clk)
if (!baud_stb)
assert(o_busy);
`endif // FORMAL
endmodule

39
serialTx-tut5/sim/top.cc Normal file
View File

@@ -0,0 +1,39 @@
#include <stdio.h>
#include <stdlib.h>
#include "verilated.h"
#include "verilated_vcd_c.h"
#include "Vtop.h"
void tick(int tickcount, Vtop *tb, VerilatedVcdC* tfp) {
tb->eval();
if (tfp)
tfp->dump(tickcount * 10 - 2);
tb->i_clk = 1;
tb->eval();
if (tfp)
tfp->dump(tickcount * 10);
tb->i_clk = 0;
tb->eval();
if (tfp) {
tfp->dump(tickcount * 10 + 5);
tfp->flush();
}
}
int main(int argc, char **argv) {
// Call commandArgs first!
Verilated::commandArgs(argc, argv);
// Instantiate our design
Vtop *tb = new Vtop;
Verilated::traceEverOn(true);
VerilatedVcdC* tfp = new VerilatedVcdC;
tb->trace(tfp, 00);
tfp->open("build/waveform.vcd");
unsigned tickcount = 0;
for (int k = 0; k < (1<<18); k++)
tick(++tickcount, tb, tfp);
}

View File

@@ -1,10 +1,12 @@
SIM_TARGET = build/top
BIN_TARGET = build/top.bin
PCF = iceFUN.pcf
PCF = constraints/iceFUN.pcf
TIMING = constraints/timing.py
YOSYS = yosys
PNR = nextpnr-ice40
IPACK = icepack
BURN = iceFUNprog
SBY = sby
VERILATOR=verilator
VERILATOR_ROOT ?= $(shell bash -c 'verilator -V|grep VERILATOR_ROOT | head -1 | sed -e "s/^.*=\s*//"')
@@ -12,43 +14,59 @@ VINC := $(VERILATOR_ROOT)/include
RTL_SRC := $(wildcard rtl/*.v)
SIM_SRC := $(wildcard sim/*.cc)
FV_SRC := sim/top.sby
BUILD_DIR := ./build
.PHONY: all burn
define colorecho
@tput setaf 6
@echo $1
@tput sgr0
endef
.PHONY: all burn fv clean sim
all: $(SIM_TARGET) $(BIN_TARGET)
# -GWIDTH=5 allows passing parameter to verilog module
$(BUILD_DIR)/Vtop.cc: $(RTL_SRC)
@echo "Running verilator"
@mkdir -p $(BUILD_DIR)
@$(VERILATOR) --trace -Wall -GWIDTH=10 -cc $^ --top-module top\
$(call colorecho, "Running verilator")
mkdir -p $(BUILD_DIR)
$(VERILATOR) --trace -Wall -cc $^ --top-module top -GWIDTH=10\
--Mdir $(BUILD_DIR) --timescale-override 10ns/1ns
$(BUILD_DIR)/Vtop__ALL.a: $(BUILD_DIR)/Vtop.cc
@make --no-print-directory -C $(BUILD_DIR) -f Vtop.mk
make --no-print-directory -C $(BUILD_DIR) -f Vtop.mk
# std=c++11 flag is needed as of verilator v4.100
$(SIM_TARGET): $(SIM_SRC) $(BUILD_DIR)/Vtop__ALL.a
@echo "Compiling simulation executable"
@g++ -I$(VINC) -I$(BUILD_DIR) -std=c++14 $(VINC)/verilated.cpp\
$(call colorecho, "Compiling simulation executable")
g++ -I$(VINC) -I$(BUILD_DIR) -std=c++14 $(VINC)/verilated.cpp\
$(VINC)/verilated_vcd_c.cpp $^ -o $@
@echo "Run simulation with ./$(SIM_TARGET)"
echo "Run simulation with ./$(SIM_TARGET)"
$(BUILD_DIR)/top.json: $(RTL_SRC)
@echo "Synthesizing ..."
@mkdir -p $(BUILD_DIR)
@$(YOSYS) -p "synth_ice40 -top top -json build/top.json" -q $^
$(call colorecho, "Synthesizing ...")
mkdir -p $(BUILD_DIR)
$(YOSYS) -p "synth_ice40 -top top -json build/top.json" -q $^
$(BIN_TARGET): $(BUILD_DIR)/top.json $(PCF)
@echo "Routing and building binary stream ..."
@$(PNR) -r --hx8k --json $< --package cb132 \
--asc $(BUILD_DIR)/top.asc --opt-timing --pcf $(PCF) -q
@$(IPACK) $(BUILD_DIR)/top.asc $@
@echo "Done!"
$(BIN_TARGET): $(BUILD_DIR)/top.json $(PCF) $(TIMING)
$(call colorecho, "Routing and building binary stream ...")
$(PNR) -r --hx8k --json $< --package cb132 \
--asc $(BUILD_DIR)/top.asc --opt-timing --pcf $(PCF) \
--pre-pack $(TIMING) -l $(BUILD_DIR)/pnr_report.txt -q
$(IPACK) $(BUILD_DIR)/top.asc $@
$(call colorecho, "Done!")
sim: $(SIM_TARGET)
$(call colorecho, "Running simulation")
$(SIM_TARGET) && open $(BUILD_DIR)/waveform.vcd
burn: $(BIN_TARGET)
@$(BURN) $<
$(BURN) $<
fv:
$(SBY) -f $(FV_SRC) -d $(BUILD_DIR)/fv
.PHONY: clean
clean:
rm -rf $(BUILD_DIR)
$V.SILENT:

View File

@@ -0,0 +1,18 @@
# For iceFUN board
set_io --warn-no-port i_clk P7
set_io --warn-no-port i_startN C11
set_io --warn-no-port i_stopN A11
set_io --warn-no-port i_resetN C6
set_io --warn-no-port o_led_row_0 A12
set_io --warn-no-port o_dataN[0] C10
set_io --warn-no-port o_dataN[1] A10
set_io --warn-no-port o_dataN[2] D7
set_io --warn-no-port o_dataN[3] D6
set_io --warn-no-port o_dataN[4] A7
set_io --warn-no-port o_dataN[5] C7
set_io --warn-no-port o_ledN A4
set_io --warn-no-port o_readyN C4
set_io --warn-no-port o_uart_tx A3

Binary file not shown.

After

Width:  |  Height:  |  Size: 171 KiB

View File

@@ -0,0 +1 @@
ctx.addClock("i_clk", 100)

View File

@@ -1,5 +0,0 @@
# For iceFUN board
set_io --warn-no-port o_led C10
set_io --warn-no-port i_clk P7
set_io --warn-no-port lcol1 A12

View File

@@ -1,12 +1,30 @@
`default_nettype none
// dummy clock generator, should be replaced by a PLL clock gen eventually
module clk_gen(
module clk_gen #(parameter DIVISION=22)(
input wire i_clk,
output wire o_clk
output wire o_clk_100MHz,
output wire o_div_clk
);
assign o_clk = i_clk;
/* verilator lint_off PINCONNECTEMPTY */
/* verilator lint_off PINMISSING */
reg [DIVISION-1:0] counter = 0;
`ifdef VERILATOR
always @(posedge i_clk) begin
counter <= counter + 1;
end
assign o_clk_100MHz = i_clk;
`else
pll_100MHz pll0(.i_clk(i_clk), .o_clk_100MHz(o_clk_100MHz), .o_pll_locked());
always @(posedge o_clk_100MHz) begin
counter <= counter + 1;
end
`endif
assign o_div_clk = counter[DIVISION-1];
/* verilator lint_on PINCONNECTEMPTY */
/* verilator lint_on PINMISSING */
endmodule
// Local Variables:
// verilog-library-directories:(".." "./rtl" ".")

115
tdc/rtl/debounce.v Normal file
View File

@@ -0,0 +1,115 @@
// Listing 5.6
module debounce
(
input wire clk, reset,
input wire sw,
output reg db
);
// symbolic state declaration
localparam [2:0]
zero = 3'b000,
wait1_1 = 3'b001,
wait1_2 = 3'b010,
wait1_3 = 3'b011,
one = 3'b100,
wait0_1 = 3'b101,
wait0_2 = 3'b110,
wait0_3 = 3'b111;
// number of counter bits (2^N * 10ns = 10ms tick)
localparam N =20;
// signal declaration
reg [N-1:0] q_reg;
wire [N-1:0] q_next;
wire m_tick;
reg [2:0] state_reg, state_next;
// body
//=============================================
// counter to generate 10 ms tick
//=============================================
always @(posedge clk)
q_reg <= q_next;
// next-state logic
assign q_next = q_reg + 1;
// output tick
assign m_tick = (q_reg==0) ? 1'b1 : 1'b0;
//=============================================
// debouncing FSM
//=============================================
// state register
always @(posedge clk, posedge reset)
if (reset)
state_reg <= zero;
else
state_reg <= state_next;
// next-state logic and output logic
always @*
begin
state_next = state_reg; // default state: the same
db = 1'b0; // default output: 0
case (state_reg)
zero:
if (sw)
state_next = wait1_1;
wait1_1:
if (~sw)
state_next = zero;
else
if (m_tick)
state_next = wait1_2;
wait1_2:
if (~sw)
state_next = zero;
else
if (m_tick)
state_next = wait1_3;
wait1_3:
if (~sw)
state_next = zero;
else
if (m_tick)
state_next = one;
one:
begin
db = 1'b1;
if (~sw)
state_next = wait0_1;
end
wait0_1:
begin
db = 1'b1;
if (sw)
state_next = one;
else
if (m_tick)
state_next = wait0_2;
end
wait0_2:
begin
db = 1'b1;
if (sw)
state_next = one;
else
if (m_tick)
state_next = wait0_3;
end
wait0_3:
begin
db = 1'b1;
if (sw)
state_next = one;
else
if (m_tick)
state_next = zero;
end
default: state_next = zero;
endcase
end
endmodule

40
tdc/rtl/pll_100MHz.v Normal file
View File

@@ -0,0 +1,40 @@
/**
* PLL configuration
*
* This Verilog module was generated automatically
* using the icepll tool from the IceStorm project.
* Use at your own risk.
*
* Given input frequency: 12.000 MHz
* Requested output frequency: 100.000 MHz
* Achieved output frequency: 100.500 MHz
*/
// this module is skipped by verilator
`ifdef VERILATOR
`else
module pll_100MHz(
input i_clk,
output o_clk_100MHz,
output o_pll_locked
);
wire clk_int;
SB_PLL40_CORE #(
.FEEDBACK_PATH("SIMPLE"),
.DIVR(4'b0000), // DIVR = 0
.DIVF(7'b1000010), // DIVF = 66
.DIVQ(3'b011), // DIVQ = 3
.FILTER_RANGE(3'b001) // FILTER_RANGE = 1
) uut (
.LOCK(o_pll_locked),
.RESETB(1'b1),
.BYPASS(1'b0),
.REFERENCECLK(i_clk),
.PLLOUTCORE(clk_int)
);
SB_GB sbGlobalBuffer_inst( .USER_SIGNAL_TO_GLOBAL_BUFFER(clk_int),
.GLOBAL_BUFFER_OUTPUT(o_clk_100MHz));
endmodule
`endif

View File

@@ -0,0 +1,17 @@
`default_nettype none
module pos_edge_detector (
input wire i_sig, // Input signal for which positive edge has to be detected
input wire i_clk, // Input signal for clock
output wire o_pe); // Output signal that gives a pulse when a positive edge occurs
reg sig_dly; // Internal signal to store the delayed version of signal
// This always block ensures that sig_dly is exactly 1 clock behind sig
always @ (posedge i_clk) begin
sig_dly <= i_sig;
end
// Combinational logic where sig is AND with delayed, inverted version of sig
// Assign statement assigns the evaluated expression in the RHS to the internal net pe
assign o_pe = i_sig & ~sig_dly;
endmodule

81
tdc/rtl/tdc.v Normal file
View File

@@ -0,0 +1,81 @@
`default_nettype none
module tdc #(parameter COUNTER_WIDTH=16)(
input wire i_clk,
input wire i_start,
input wire i_stop,
input wire i_reset,
output wire o_ready,
output wire [COUNTER_WIDTH-1:0] o_data
);
reg [COUNTER_WIDTH-1:0] counter;
assign o_data = counter;
// states
localparam state_idle = 2'b00;
localparam state_started = 2'b01;
localparam state_running = 2'b10;
localparam state_stopped = 2'b11;
reg [1:0] current_state, next_state;
// ensure that state changes each clock
always @(posedge i_clk, posedge i_reset) begin
if (i_reset) begin
current_state <= state_idle;
end else begin
current_state <= next_state;
end
end
// state logic
/* verilator lint_off COMBDLY */
always @(*) begin
case (current_state)
state_idle: begin
if (i_start && (~i_stop))
next_state <= state_started;
else
next_state <= state_idle;
end
state_started: begin
if (~i_start && (~i_stop))
next_state <= state_running;
else
next_state <= state_started;
end
state_running: begin
if (~i_start && (i_stop))
next_state <= state_stopped;
else
next_state <= state_running;
end
state_stopped: begin
if (i_reset)
next_state <= state_idle;
else
next_state <= state_stopped;
end
default : next_state <= current_state;
endcase
end
/* verilator lint_on COMBDLY */
// counter runs during running state only
always @(posedge i_clk) begin
case (current_state)
state_idle: counter <= 0;
state_started: counter <= 0;
state_running: counter <= counter + 1;
state_stopped: counter <= counter;
default : counter <= 0;
endcase
end
assign o_ready = (current_state == state_stopped);
endmodule
// Local Variables:
// verilog-library-directories:(".." "./rtl" ".")
// End:

View File

@@ -1,26 +1,131 @@
`default_nettype none
module top(i_clk, o_led, lcol1);
parameter WIDTH = 24;
input wire i_clk;
output wire o_led;
output wire lcol1;
/* verilator lint_off UNUSED */
module top #(parameter WIDTH=24)(
input wire i_clk,
input wire i_startN,
input wire i_stopN,
input wire i_resetN,
// input wire [31:0] i_calib_delay,
output wire o_ledN,
output wire o_readyN,
output wire [5:0] o_dataN,
output wire o_led_row_0,
output wire o_uart_tx
);
wire clk_1Hz; // 1.4 Hz actually
wire clk_100MHz;
reg buf_led = 0;
wire buf_ready;
parameter TDC_COUNTER_WIDTH = 32;
wire [TDC_COUNTER_WIDTH-1:0] buf_data;
assign o_readyN = ~buf_ready;
assign o_dataN = ~buf_data[TDC_COUNTER_WIDTH-1:TDC_COUNTER_WIDTH-6];
wire clk_12MHz;
clk_gen clk_gen_0 (/*autoinst*/
/* verilator lint_off PINMISSING */
clk_gen #(.DIVISION(26)) clk_gen0 (
.o_div_clk (clk_1Hz),
.o_clk_100MHz (clk_100MHz),
.i_clk (i_clk));
/* verilator lint_on PINMISSING */
reg db_start, db_stop;
reg [31:0] cal_delay = 15000;
wire aa;
debounce db1 (
.db (aa),
.clk (clk_100MHz),
.reset (~i_resetN),
.sw (~i_startN ));
tdc_calib tcalib (
.o_calib_start (db_start),
.o_calib_stop (db_stop),
.i_clk (i_clk),
// .i_delay (i_calib_delay),
.i_delay (cal_delay),
.i_start_btn (aa),
.i_resetN (i_resetN)
);
// always @(posedge clk_100MHz) begin
// db_start <= ~i_startN;
// db_stop <= ~i_stopN;
// end
`ifdef DEBOUNCE
debounce db1 (
// Outputs
.o_clk (clk_12MHz),
.db (db_start),
// Inputs
.i_clk (i_clk));
.clk (clk_100MHz),
.reset (~i_resetN),
.sw (~i_startN));
debounce db2 (
// Outputs
.db (db_stop),
// Inputs
.clk (clk_100MHz),
.reset (~i_resetN),
.sw (~i_stopN));
`endif
reg [WIDTH-1:0] counter;
tdc #(.COUNTER_WIDTH(32)) tdc0 (
// Outputs
.o_ready (buf_ready),
.o_data (buf_data),
// Inputs
.i_clk (clk_100MHz),
.i_start (db_start),
.i_stop (db_stop),
.i_reset (~i_resetN));
always @(posedge clk_12MHz)
counter <= counter + 1'b1;
always @(posedge clk_1Hz) begin
buf_led <= ~buf_led;
end
assign o_ledN = ~buf_led;
assign o_led_row_0 = 1'b0;
parameter CLOCK_RATE_HZ = 100_000_000; // 100MHz clock
parameter BAUD_RATE = 115_200; // 115.2 KBaud
parameter INITIAL_UART_SETUP = (CLOCK_RATE_HZ/BAUD_RATE);
// transferring data out every second
wire tx_start;
pos_edge_detector pe0(.i_sig(buf_ready), .i_clk(clk_100MHz), .o_pe(tx_start));
wire tx_busy;
reg tx_stb;
reg [2:0] tx_index;
reg [7:0] tx_data;
// there are 4bytes to transmit
initial tx_index = 3'd0;
always @(posedge clk_100MHz) begin
if ((tx_stb)&&(!tx_busy))
tx_index <= tx_index + 1'b1;
end
always @(posedge clk_100MHz) begin
case(tx_index)
3'd0: tx_data <= "f";
3'd1: tx_data <= "f";
3'd2: tx_data <= buf_data[31:24];
3'd3: tx_data <= buf_data[23:16];
3'd4: tx_data <= buf_data[15:8];
3'd5: tx_data <= buf_data[7:0];
3'd6: tx_data <= "f";
3'd7: tx_data <= "f";
endcase
end
initial tx_stb = 1'b0;
// transmit only when data is ready
always @(posedge clk_100MHz) begin
if (tx_start)
tx_stb <= 1'b1;
else if ((tx_stb)&&(!tx_busy)&&(tx_index==3'd7))
tx_stb <= 1'b0;
end
txuart #(INITIAL_UART_SETUP[23:0]) transmitter(clk_100MHz,
tx_stb, tx_data, o_uart_tx, tx_busy);
assign o_led = counter[WIDTH-1];
assign lcol1 = 1'b0;
endmodule
// Local Variables:

141
tdc/rtl/txuart.v Normal file
View File

@@ -0,0 +1,141 @@
`default_nettype none
module txuart(i_clk, i_wr, i_data, o_uart_tx, o_busy);
parameter [23:0] CLOCKS_PER_BAUD = 24'd868;
input wire i_clk;
input wire i_wr;
input wire [7:0] i_data;
// And the UART output line itself
output wire o_uart_tx;
// A line to tell others when we are ready to accept data. If
// (i_wr)&&(!o_busy) is ever true, then the core has accepted a byte
// for transmission.
output reg o_busy;
// Define several states
localparam [3:0] START = 4'h0,
BIT_ZERO = 4'h1,
BIT_ONE = 4'h2,
BIT_TWO = 4'h3,
BIT_THREE = 4'h4,
BIT_FOUR = 4'h5,
BIT_FIVE = 4'h6,
BIT_SIX = 4'h7,
BIT_SEVEN = 4'h8,
LAST = 4'h8,
IDLE = 4'hf;
reg [23:0] counter;
reg [3:0] state;
reg [8:0] lcl_data;
reg baud_stb;
// o_busy
//
// This is a register, designed to be true is we are ever busy above.
// originally, this was going to be true if we were ever not in the
// idle state. The logic has since become more complex, hence we have
// a register dedicated to this and just copy out that registers value.
initial o_busy = 1'b0;
initial state = IDLE;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
// Immediately start us off with a start bit
{ o_busy, state } <= { 1'b1, START };
else if (baud_stb)
begin
if (state == IDLE) // Stay in IDLE
{ o_busy, state } <= { 1'b0, IDLE };
else if (state < LAST) begin
o_busy <= 1'b1;
state <= state + 1'b1;
end else // Wait for IDLE
{ o_busy, state } <= { 1'b1, IDLE };
end
// lcl_data
//
// This is our working copy of the i_data register which we use
// when transmitting. It is only of interest during transmit, and is
// allowed to be whatever at any other time. Hence, if o_busy isn't
// true, we can always set it. On the one clock where o_busy isn't
// true and i_wr is, we set it and o_busy is true thereafter.
// Then, on any baud_stb (i.e. change between baud intervals)
// we simple logically shift the register right to grab the next bit.
initial lcl_data = 9'h1ff;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
lcl_data <= { i_data, 1'b0 };
else if (baud_stb)
lcl_data <= { 1'b1, lcl_data[8:1] };
// o_uart_tx
//
// This is the final result/output desired of this core. It's all
// centered about o_uart_tx. This is what finally needs to follow
// the UART protocol.
//
assign o_uart_tx = lcl_data[0];
// All of the above logic is driven by the baud counter. Bits must last
// CLOCKS_PER_BAUD in length, and this baud counter is what we use to
// make certain of that.
//
// The basic logic is this: at the beginning of a bit interval, start
// the baud counter and set it to count CLOCKS_PER_BAUD. When it gets
// to zero, restart it.
//
// However, comparing a 28'bit number to zero can be rather complex--
// especially if we wish to do anything else on that same clock. For
// that reason, we create "baud_stb". baud_stb is
// nothing more than a flag that is true anytime baud_counter is zero.
// It's true when the logic (above) needs to step to the next bit.
// Simple enough?
//
// I wish we could stop there, but there are some other (ugly)
// conditions to deal with that offer exceptions to this basic logic.
//
// 1. When the user has commanded a BREAK across the line, we need to
// wait several baud intervals following the break before we start
// transmitting, to give any receiver a chance to recognize that we are
// out of the break condition, and to know that the next bit will be
// a stop bit.
//
// 2. A reset is similar to a break condition--on both we wait several
// baud intervals before allowing a start bit.
//
// 3. In the idle state, we stop our counter--so that upon a request
// to transmit when idle we can start transmitting immediately, rather
// than waiting for the end of the next (fictitious and arbitrary) baud
// interval.
//
// When (i_wr)&&(!o_busy)&&(state == IDLE) then we're not only in
// the idle state, but we also just accepted a command to start writing
// the next word. At this point, the baud counter needs to be reset
// to the number of CLOCKS_PER_BAUD, and baud_stb set to zero.
//
// The logic is a bit twisted here, in that it will only check for the
// above condition when baud_stb is false--so as to make
// certain the STOP bit is complete.
initial baud_stb = 1'b1;
initial counter = 0;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
begin
counter <= CLOCKS_PER_BAUD - 1'b1;
baud_stb <= 1'b0;
end else if (!baud_stb)
begin
baud_stb <= (counter == 24'h01);
counter <= counter - 1'b1;
end else if (state != IDLE)
begin
counter <= CLOCKS_PER_BAUD - 1'b1;
baud_stb <= 1'b0;
end
endmodule

View File

@@ -5,43 +5,70 @@
#include "Vtop.h"
void tick(int tickcount, Vtop *tb, VerilatedVcdC* tfp) {
tb->eval();
if (tfp)
tfp->dump(tickcount * 10 - 2);
tb->i_clk = 1;
tb->eval();
if (tfp)
tfp->dump(tickcount * 10);
tb->i_clk = 0;
tb->eval();
if (tfp) {
tfp->dump(tickcount * 10 + 5);
tfp->flush();
}
tb->eval();
if (tfp)
tfp->dump(tickcount * 10 - 2);
tb->i_clk = 1;
tb->eval();
if (tfp)
tfp->dump(tickcount * 10);
tb->i_clk = 0;
tb->eval();
if (tfp) {
tfp->dump(tickcount * 10 + 5);
tfp->flush();
}
}
int main(int argc, char **argv) {
// Call commandArgs first!
Verilated::commandArgs(argc, argv);
// Call commandArgs first!
Verilated::commandArgs(argc, argv);
// Instantiate our design
Vtop *tb = new Vtop;
Verilated::traceEverOn(true);
VerilatedVcdC* tfp = new VerilatedVcdC;
// Instantiate our design
Vtop *tb = new Vtop;
Verilated::traceEverOn(true);
VerilatedVcdC* tfp = new VerilatedVcdC;
tb->trace(tfp, 00);
tfp->open("build/waveform.vcd");
tb->trace(tfp, 00);
tfp->open("build/waveform.vcd");
unsigned tickcount = 0;
int last_led = tb->o_led;
// initial state
tb->i_resetN = 1;
tb->i_startN = 1;
tb->i_stopN = 1;
unsigned tickcount = 0;
for (int k = 0; k < 2; k++)
tick(++tickcount, tb, tfp);
for(int k=0; k<(1 << 12); k++) {
tick(++tickcount, tb, tfp);
// reset pulse, then wait for a few clock cycles
tb->i_resetN = 0;
tick(++tickcount, tb, tfp);
tb->i_resetN = 1;
if (last_led != tb->o_led) {
printf("k = %7d, led = %d\n", k, tb->o_led);
}
for (int k = 0; k < 3; k++)
tick(++tickcount, tb, tfp);
last_led = tb->o_led;
}
// relevant const
const unsigned int main_clk_Hz = 100 * 1000 * 1000; // 100 MHz
const unsigned int db_clk_Hz = 10; // 10 ms -> 10 Hz
const unsigned int db_ticks = main_clk_Hz / db_clk_Hz;
// tb->i_calib_delay = 20;
// start pulse
tb->i_startN = 0;
tick(++tickcount, tb, tfp);
tb->i_startN = 1;
// for (int k = 0; k < tb->i_calib_delay + 10; k++)
tick(++tickcount, tb, tfp);
for (int k = 0; k < (1<<16); k++)
tick(++tickcount, tb, tfp);
tb->i_resetN = 0;
tick(++tickcount, tb, tfp);
tb->i_resetN = 1;
for (int k = 0; k < 30; k++)
tick(++tickcount, tb, tfp);
}

56
uart/Makefile Normal file
View File

@@ -0,0 +1,56 @@
# Project setup
TOP ?= top
SIM = iverilog
WAVE = vvp
PCF = constraints/iceFUN.pcf
TIMING = constraints/timing.py
YOSYS = yosys
PNR = nextpnr-ice40
IPACK = icepack
BURN = iceFUNprog
SBY = sby
BUILD_DIR = ./build
VCD = $(BUILD_DIR)/waveform.vcd
BIN_TARGET = build/top.bin
# Files
MODULES += $(wildcard rtl/*.v)
TEST = tb.v
define colorecho
@tput setaf 6
@echo $1
@tput sgr0
endef
.PHONY: all clean burn
all: sim
sim: $(TEST) $(MODULES)
@mkdir -p $(BUILD_DIR)
@$(SIM) -o $(BUILD_DIR)/tb_out $< $(MODULES) && $(WAVE) $(BUILD_DIR)/tb_out && open $(VCD)
$(BUILD_DIR)/top.json: $(MODULES)
$(call colorecho, "Synthesizing ...")
mkdir -p $(BUILD_DIR)
$(YOSYS) -p "synth_ice40 -top uart_echo -json build/top.json" -q $^
$(BIN_TARGET): $(BUILD_DIR)/top.json $(PCF) $(TIMING)
$(call colorecho, "Routing and building binary stream ...")
$(PNR) -r --hx8k --json $< --package cb132 \
--asc $(BUILD_DIR)/top.asc --opt-timing --pcf $(PCF) \
--pre-pack $(TIMING) -l $(BUILD_DIR)/pnr_report.txt -q
$(IPACK) $(BUILD_DIR)/top.asc $@
$(call colorecho, "Done!")
burn: $(BIN_TARGET)
$(BURN) $<
fv:
$(SBY) -f $(FV_SRC) -d $(BUILD_DIR)/fv
clean:
rm -rf $(BUILD_DIR)

78
uart/bench/uart_rx_tb.v Normal file
View File

@@ -0,0 +1,78 @@
`timescale 1ns/1ps
`define IVERILOG 1
`default_nettype none
module uart_rx_tb;
/*autowire*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [7:0] data_o; // From uut of uart_rx.v
wire rx_done_o; // From uut of uart_rx.v
// End of automatics
/*autoreginput*/
// Beginning of automatic reg inputs (for undeclared instantiated-module inputs)
reg clk; // To uut of uart_rx.v
reg rst_n; // To uut of uart_rx.v
reg rx_i; // To uut of uart_rx.v
// End of automatics
localparam clk_period = 20;
localparam clocks_per_baud = 20;
uart_rx #(/*autoinstparam*/
// Parameters
.CLOCKS_PER_BAUD (clocks_per_baud - 1))
uut (/*autoinst*/
// Outputs
.data_o (data_o[7:0]),
.rx_done_o (rx_done_o),
// Inputs
.clk (clk),
.rst_n (rst_n),
.rx_i (rx_i));
initial begin
$dumpfile("build/waveform.vcd");
$dumpvars(0, uut);
clk = 1'b1;
rst_n = 1'b1;
rx_i = 1'b1;
end
always
#(clk_period/2) clk = ~clk;
initial begin
#clk_period;
rst_n = 0; // start reset
#clk_period;
rst_n = 1; // finish reset
#(clk_period * 50);
rx_i = 0; // start bit
#(clk_period * clocks_per_baud);
rx_i = 1; // bit 0
#(clk_period * clocks_per_baud);
rx_i = 0; // bit 1
#(clk_period * clocks_per_baud);
rx_i = 1; // bit 2
#(clk_period * clocks_per_baud);
rx_i = 0; // bit 3
#(clk_period * clocks_per_baud);
rx_i = 1; // bit 4
#(clk_period * clocks_per_baud);
rx_i = 0; // bit 5
#(clk_period * clocks_per_baud);
rx_i = 1; // bit 6
#(clk_period * clocks_per_baud);
rx_i = 0; // bit 7
#(clk_period * clocks_per_baud);
rx_i = 1; // stop bit
#(clk_period * clocks_per_baud);
#800 $finish; // finish at 200 ticks
end
endmodule // end of uart_rx_tb
// Local Variables:
// verilog-library-directories:(".." "../rtl" ".")
// End:

69
uart/bench/uart_top_tb.v Normal file
View File

@@ -0,0 +1,69 @@
`timescale 1ns/100ps
`define IVERILOG 1
module uart_top_tb;
/*autowire*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire tx_o; // From uut of uart_top.v
// End of automatics
/*autoreginput*/
// Beginning of automatic reg inputs (for undeclared instantiated-module inputs)
reg clk; // To uut of uart_top.v
reg rst_n; // To uut of uart_top.v
reg rx_i; // To uut of uart_top.v
// End of automatics
localparam T = 10; // clock cycle is 10 ticks
localparam clocks_per_baud = 20;
uart_echo #(/*autoinstparam*/
// Parameters
.CLOCKS_PER_BAUD (clocks_per_baud-1))
uut (/*autoinst*/
// Outputs
.tx_o (tx_o),
// Inputs
.clk (clk),
.rst_n (rst_n),
.rx_i (rx_i));
// setup dump and reset
initial begin
$dumpfile("build/waveform.vcd");
$dumpvars(0, uut);
clk = 1'b1;
rst_n = 1'b1;
end
// clocking
always #(T/2) clk = ~clk;
// when to finish
initial #4000 $finish; // finish at 200 ticks
// other stimulus
initial begin
rx_i = 1;
#(T) rst_n = 0;
#(T) rst_n = 1;
#(10*T);
rx_i = 0; // start bit
#(T * clocks_per_baud) rx_i = 1; // bit 0
#(T * clocks_per_baud) rx_i = 0; // bit 1
#(T * clocks_per_baud) rx_i = 1; // bit 2
#(T * clocks_per_baud) rx_i = 0; // bit 3
#(T * clocks_per_baud) rx_i = 1; // bit 4
#(T * clocks_per_baud) rx_i = 0; // bit 5
#(T * clocks_per_baud) rx_i = 1; // bit 6
#(T * clocks_per_baud) rx_i = 0; // bit 7
#(T * clocks_per_baud) rx_i = 1; // stop bit
#(T * clocks_per_baud);
end
endmodule // end of uart_top_tb
// Local Variables:
// verilog-library-directories:(".." "../rtl" ".")
// End:

63
uart/bench/uart_tx_tb.v Normal file
View File

@@ -0,0 +1,63 @@
`timescale 1ns/1ps
`define IVERILOG 1
module uart_tx_tb;
/*autowire*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire tx_done_o; // From uut of uart_tx.v
wire tx_o; // From uut of uart_tx.v
// End of automatics
/*autoreginput*/
// Beginning of automatic reg inputs (for undeclared instantiated-module inputs)
reg clk; // To uut of uart_tx.v
reg [7:0] data_i; // To uut of uart_tx.v
reg en_i; // To uut of uart_tx.v
reg rst_n; // To uut of uart_tx.v
// End of automatics
localparam CLK_PERIOD = 10;
uart_tx #(/*autoinstparam*/
// Parameters
.CLOCKS_PER_BAUD (CLK_PERIOD - 1)) uut (/*autoinst*/
// Outputs
.tx_o (tx_o),
.tx_done_o (tx_done_o),
// Inputs
.clk (clk),
.rst_n (rst_n),
.en_i (en_i),
.data_i (data_i[7:0]));
initial begin
$dumpfile("build/waveform.vcd");
$dumpvars(0, uut);
clk = 1'b1;
rst_n = 1'b1;
data_i = 0;
end
always
#(CLK_PERIOD/2) clk = ~clk;
initial begin
#(CLK_PERIOD);
rst_n = 0;
#(CLK_PERIOD);
rst_n = 1;
#(CLK_PERIOD);
data_i = 8'h55;
en_i = 1;
#(CLK_PERIOD);
en_i = 0;
#(200 * CLK_PERIOD);
#400 $finish; // finish at 200 ticks
end
endmodule // end of uart_tx_tb
// Local Variables:
// verilog-library-directories:(".." "../rtl" ".")
// End:

View File

@@ -0,0 +1,8 @@
# For iceFUN board
set_io --warn-no-port clk P7
# set_io --warn-no-port i_start_tx C11
set_io --warn-no-port rst_n C6
set_io --warn-no-port tx_o A3
set_io --warn-no-port rx_i A1

View File

@@ -0,0 +1 @@
ctx.addClock("clk", 12)

37
uart/rtl/uart_echo.v Normal file
View File

@@ -0,0 +1,37 @@
`default_nettype none
module uart_echo #(parameter CLOCKS_PER_BAUD=16'd104)(
input wire clk,
input wire rst_n,
input wire rx_i,
output wire tx_o
);
wire tx_en;
wire [7:0] tx_data;
uart_rx #(/*autoinstparam*/
// Parameters
.CLOCKS_PER_BAUD (CLOCKS_PER_BAUD)) rx (/*autoinst*/
// Outputs
.data_o (tx_data),
.rx_done_o (tx_en),
// Inputs
.clk (clk),
.rst_n (rst_n),
.rx_i (rx_i));
uart_tx #(/*autoinstparam*/
// Parameters
.CLOCKS_PER_BAUD (CLOCKS_PER_BAUD)) tx (/*autoinst*/
// Outputs
.tx_o (tx_o),
.tx_done_o (),
// Inputs
.clk (clk),
.rst_n (rst_n),
.en_i (tx_en),
.data_i (tx_data));
endmodule
// Local Variables:
// verilog-library-directories:(".." "../rtl" ".")
// End:

116
uart/rtl/uart_rx.v Normal file
View File

@@ -0,0 +1,116 @@
`default_nettype none
module uart_rx #(parameter CLOCKS_PER_BAUD=16'd868)(
input clk,
input rst_n,
input rx_i,
output reg [7:0] data_o,
output reg rx_done_o
);
localparam clocks_per_half_bit = CLOCKS_PER_BAUD / 2;
localparam s_idle = 5'b00001,
s_start = 5'b00010,
s_rd = 5'b00100,
s_stop = 5'b01000,
s_done = 5'b10000;
reg en_cnt;
reg [15:0] cnt;
reg [4:0] state;
reg [2:0] rx_bits;
always @(posedge clk or negedge rst_n) begin
if (!rst_n)
cnt <= 16'd0;
else if ((en_cnt == 0) || (cnt == CLOCKS_PER_BAUD))
cnt <= 16'd0;
else
cnt <= cnt + 1;
end
// edge detection
reg rx_0, rx_1, rx_2, rx_3;
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
rx_0 <= 0;
rx_1 <= 0;
rx_2 <= 0;
rx_3 <= 0;
end else begin
rx_3 <= rx_i;
rx_2 <= rx_3;
rx_1 <= rx_2;
rx_0 <= rx_1;
end
end
wire start_flag;
assign start_flag = rx_0 & rx_1 & (~rx_2) &(~rx_3);
always @(posedge clk or negedge rst_n) begin
if (~rst_n) begin
state <= s_idle;
en_cnt <= 0;
data_o <= 0;
rx_bits <= 0;
rx_done_o <= 0;
end else begin
case (state)
s_idle: begin
rx_bits <= 0;
rx_done_o <= 0;
if (start_flag) begin
en_cnt <= 1;
state <= s_start;
end else begin
en_cnt <= 0;
state <= s_idle;
end
end
s_start: begin
if (cnt == clocks_per_half_bit)
if (rx_i == 0)
state <= s_rd;
else
state <= s_idle;
end
s_rd: begin
if (cnt == clocks_per_half_bit)
if (rx_bits == 3'd7)
state <= s_stop;
else begin
data_o[rx_bits] <= rx_i;
rx_bits <= rx_bits + 1;
state <= s_rd;
end
end
s_stop: begin
if (cnt == clocks_per_half_bit)
if (rx_i == 1)
state <= s_done;
else
state <= s_idle;
end
s_done: begin
en_cnt <= 0;
rx_done_o <= 1;
state <= s_idle;
end
default : begin
state <= s_idle;
end
endcase
end
end
endmodule
// Local Variables:
// verilog-library-directories:(".." "../rtl" ".")
// End:

103
uart/rtl/uart_tx.v Normal file
View File

@@ -0,0 +1,103 @@
`default_nettype none
module uart_tx #(parameter CLOCKS_PER_BAUD=16'd868)(
input wire clk,
input wire rst_n,
input wire en_i,
input wire [7:0] data_i,
output reg tx_o,
output reg tx_done_o
);
localparam s_idle = 5'b00001,
s_start = 5'b00010,
s_wr = 5'b00100,
s_stop = 5'b01000,
s_done = 5'b10000;
reg en_cnt;
reg [15:0] cnt;
reg [4:0] state;
reg [7:0] data_r;
reg [2:0] tx_bits;
always @(posedge clk or negedge rst_n) begin
if (!rst_n)
cnt <= 16'd0;
else if ((en_cnt == 0) || (cnt == CLOCKS_PER_BAUD))
cnt <= 16'd0;
else
cnt <= cnt + 1;
end
always @(posedge clk or negedge rst_n) begin
if (~rst_n) begin
state <= s_idle;
tx_o <= 1;
en_cnt <= 0;
data_r <= 0;
tx_bits <= 0;
tx_done_o <= 0;
end else begin
case (state)
s_idle: begin
data_r <= data_i;
tx_bits <= 0;
tx_done_o <= 0;
if (en_i == 1) begin
en_cnt <= 1;
state <= s_start;
end else begin
en_cnt <= 0;
state <= s_idle;
end
end
s_start: begin
if (cnt == CLOCKS_PER_BAUD)
state <= s_wr;
else begin
tx_o <= 0;
state <= s_start;
end
end
s_wr: begin
if (cnt == CLOCKS_PER_BAUD) begin
if (tx_bits == 3'd7)
state <= s_stop;
else begin
tx_bits <= tx_bits + 1;
state <= s_wr;
end
end else begin
tx_o <= data_r[tx_bits];
state <= s_wr;
end
end
s_stop: begin
if (cnt == CLOCKS_PER_BAUD)
state <= s_done;
else begin
tx_o <= 1;
state <= s_stop;
end
end
s_done: begin
en_cnt <= 0;
tx_done_o <= 1;
state <= s_idle;
end
default : begin
state <= s_idle;
end
endcase
end
end
endmodule
// Local Variables:
// verilog-library-directories:(".." "../rtl" ".")
// End:

1
uart/tb.v Symbolic link
View File

@@ -0,0 +1 @@
bench/uart_top_tb.v

68
wb-tut4/Makefile Normal file
View File

@@ -0,0 +1,68 @@
SIM_TARGET = build/top
BIN_TARGET = build/top.bin
PCF = constraints/iceFUN.pcf
TIMING = constraints/timing.py
YOSYS = yosys
PNR = nextpnr-ice40
IPACK = icepack
BURN = iceFUNprog
SBY = sby
VERILATOR=verilator
VERILATOR_ROOT ?= $(shell bash -c 'verilator -V|grep VERILATOR_ROOT | head -1 | sed -e "s/^.*=\s*//"')
VINC := $(VERILATOR_ROOT)/include
RTL_SRC := $(wildcard rtl/*.v)
SIM_SRC := $(wildcard sim/*.cc)
FV_SRC := sim/top.sby
BUILD_DIR := ./build
define colorecho
@tput setaf 6
@echo $1
@tput sgr0
endef
.PHONY: all burn fv clean
all: $(SIM_TARGET) $(BIN_TARGET)
$(BUILD_DIR)/Vtop.cc: $(RTL_SRC)
$(call colorecho, "Running verilator")
mkdir -p $(BUILD_DIR)
$(VERILATOR) --trace -Wall -cc $^ --top-module top\
--Mdir $(BUILD_DIR) --timescale-override 10ns/1ns
$(BUILD_DIR)/Vtop__ALL.a: $(BUILD_DIR)/Vtop.cc
make --no-print-directory -C $(BUILD_DIR) -f Vtop.mk
# std=c++11 flag is needed as of verilator v4.100
$(SIM_TARGET): $(SIM_SRC) $(BUILD_DIR)/Vtop__ALL.a
$(call colorecho, "Compiling simulation executable")
g++ -I$(VINC) -I$(BUILD_DIR) -std=c++14 $(VINC)/verilated.cpp\
$(VINC)/verilated_vcd_c.cpp $^ -o $@
echo "Run simulation with ./$(SIM_TARGET)"
$(BUILD_DIR)/top.json: $(RTL_SRC)
$(call colorecho, "Synthesizing ...")
mkdir -p $(BUILD_DIR)
$(YOSYS) -p "synth_ice40 -top top -json build/top.json" -q $^
$(BIN_TARGET): $(BUILD_DIR)/top.json $(PCF) $(TIMING)
$(call colorecho, "Routing and building binary stream ...")
$(PNR) -r --hx8k --json $< --package cb132 \
--asc $(BUILD_DIR)/top.asc --opt-timing --pcf $(PCF) \
--pre-pack $(TIMING) -l $(BUILD_DIR)/pnr_report.txt -q
$(IPACK) $(BUILD_DIR)/top.asc $@
$(call colorecho, "Done!")
burn: $(BIN_TARGET)
$(BURN) $<
fv:
$(SBY) -f $(FV_SRC) -d $(BUILD_DIR)/fv
clean:
rm -rf $(BUILD_DIR)
$V.SILENT:

View File

@@ -0,0 +1,14 @@
# For iceFUN board
set_io --warn-no-port i_clk P7
set_io --warn-no-port i_request A5
set_io --warn-no-port o_led_row_0 A12
set_io --warn-no-port o_led[0] C10
set_io --warn-no-port o_led[1] A10
set_io --warn-no-port o_led[2] D7
set_io --warn-no-port o_led[3] D6
set_io --warn-no-port o_led[4] A7
set_io --warn-no-port o_led[5] C7
# set_io --warn-no-port o_led[6] A4
set_io --warn-no-port o_busy C4

View File

@@ -0,0 +1 @@
ctx.addClock("i_clk", 100)

13
wb-tut4/rtl/clk_gen.v Normal file
View File

@@ -0,0 +1,13 @@
`default_nettype none
// dummy clock generator, should be replaced by a PLL clock gen eventually
module clk_gen(
input wire i_clk,
output wire o_clk
);
assign o_clk = i_clk;
endmodule
// Local Variables:
// verilog-library-directories:(".." "./rtl" ".")
// End:

70
wb-tut4/rtl/top.v Normal file
View File

@@ -0,0 +1,70 @@
`default_nettype none
module top(i_clk,
i_cyc, i_stb, i_we, i_addr, i_data,
o_stall, o_ack, o_data,
o_led, o_led_row_0);
input wire i_clk;
//
// Our wishbone bus interface
input wire i_cyc, i_stb, i_we;
input wire i_addr;
input wire [31:0] i_data;
//
output wire o_stall;
output reg o_ack;
output wire [31:0] o_data;
//
// The output LED
output wire o_led_row_0;
output reg [5:0] o_led;
wire busy;
reg [3:0] state;
initial state = 0;
always @(posedge i_clk) begin
if ((i_stb)&&(i_we)&&(!o_stall))
state <= 4'h1;
else if (state >= 4'd11)
state <= 4'h0;
else if (state != 0)
state <= state + 1'b1;
end
always @(posedge i_clk) begin
case(state)
4'h1: o_led <= 6'b00_0001;
4'h2: o_led <= 6'b00_0010;
4'h3: o_led <= 6'b00_0100;
4'h4: o_led <= 6'b00_1000;
4'h5: o_led <= 6'b01_0000;
4'h6: o_led <= 6'b10_0000;
4'h7: o_led <= 6'b01_0000;
4'h8: o_led <= 6'b00_1000;
4'h9: o_led <= 6'b00_0100;
4'ha: o_led <= 6'b00_0010;
4'hb: o_led <= 6'b00_0001;
default: o_led <= 6'b00_0000;
endcase
end
assign busy = (state != 0);
initial o_ack = 1'b0;
always @(posedge i_clk)
o_ack <= (i_stb)&&(!o_stall);
assign o_stall = (busy)&&(i_we);
assign o_data = { 28'h0, state };
assign o_led_row_0 = 0;
// Verilator lint_off UNUSED
wire [33:0] unused;
assign unused = { i_cyc, i_addr, i_data };
// Verilator lint_on UNUSED
//
endmodule
// Local Variables:
// verilog-library-directories:(".." "./rtl" ".")
// End:

118
wb-tut4/sim/top.cc Normal file
View File

@@ -0,0 +1,118 @@
#include <stdio.h>
#include <stdlib.h>
#include "Vtop.h"
#include "verilated.h"
#include "verilated_vcd_c.h"
int tickcount = 0;
Vtop *tb;
VerilatedVcdC *tfp;
void tick(void) {
tickcount++;
tb->eval();
if (tfp)
tfp->dump(tickcount * 10 - 2);
tb->i_clk = 1;
tb->eval();
if (tfp)
tfp->dump(tickcount * 10);
tb->i_clk = 0;
tb->eval();
if (tfp) {
tfp->dump(tickcount * 10 + 5);
tfp->flush();
}
}
unsigned wb_read(unsigned a) {
tb->i_cyc = tb->i_stb = 1;
tb->i_we = 0;
tb->eval();
tb->i_addr= a;
// Make the request
while(tb->o_stall)
tick();
tick();
tb->i_stb = 0;
// Wait for the ACK
while(!tb->o_ack)
tick();
// Idle the bus, and read the response
tb->i_cyc = 0;
return tb->o_data;
}
void wb_write(unsigned a, unsigned v) {
tb->i_cyc = tb->i_stb = 1;
tb->i_we = 1;
tb->eval();
tb->i_addr= a;
tb->i_data= v;
// if busy, keep ticking
while(tb->o_stall)
tick();
// Then, make the bus request
tick();
// and pull stb down
tb->i_stb = 0;
// Wait for the acknowledgement
while(!tb->o_ack)
tick();
// Idle the bus and return
tb->i_cyc = tb->i_stb = 0;
}
int main(int argc, char **argv) {
int last_led, last_state = 0, state = 0;
// Call commandArgs first!
Verilated::commandArgs(argc, argv);
// Instantiate our design
tb = new Vtop;
// Generate a trace
Verilated::traceEverOn(true);
tfp = new VerilatedVcdC;
tb->trace(tfp, 99);
tfp->open("build/waveform.vcd");
last_led = tb->o_led;
// Read from the current state
printf("Initial state is: 0x%02x\n",
wb_read(0));
for(int cycle=0; cycle<2; cycle++) {
// Wait five clocks
for(int i=0; i<5; i++)
tick();
// Start the LEDs cycling
wb_write(0,0);
tick();
while((state = wb_read(0))!=0) {
if ((state != last_state)
||(tb->o_led != last_led)) {
printf("%6d: State #%2d ",
tickcount, state);
for(int j=0; j<6; j++) {
if(tb->o_led & (1<<j))
printf("O");
else
printf("-");
} printf("\n");
} tick();
last_state = state;
last_led = tb->o_led;
}
}
tfp->close();
delete tfp;
delete tb;
}

13
wb-tut4/sim/top.sby Normal file
View File

@@ -0,0 +1,13 @@
[options]
mode prove
[engines]
smtbmc
[script]
read -formal *.v
prep -top top
[files]
rtl/top.v
rtl/clk_gen.v