uart tx using zipcpu tut5 code
This commit is contained in:
72
serialTx-tut5/Makefile
Normal file
72
serialTx-tut5/Makefile
Normal file
@@ -0,0 +1,72 @@
|
||||
SIM_TARGET = build/top
|
||||
BIN_TARGET = build/top.bin
|
||||
PCF = constraints/iceFUN.pcf
|
||||
TIMING = constraints/timing.py
|
||||
YOSYS = yosys
|
||||
PNR = nextpnr-ice40
|
||||
IPACK = icepack
|
||||
BURN = iceFUNprog
|
||||
SBY = sby
|
||||
|
||||
VERILATOR=verilator
|
||||
VERILATOR_ROOT ?= $(shell bash -c 'verilator -V|grep VERILATOR_ROOT | head -1 | sed -e "s/^.*=\s*//"')
|
||||
VINC := $(VERILATOR_ROOT)/include
|
||||
|
||||
RTL_SRC := $(wildcard rtl/*.v)
|
||||
SIM_SRC := $(wildcard sim/*.cc)
|
||||
FV_SRC := sim/top.sby
|
||||
|
||||
BUILD_DIR := ./build
|
||||
|
||||
define colorecho
|
||||
@tput setaf 6
|
||||
@echo $1
|
||||
@tput sgr0
|
||||
endef
|
||||
|
||||
.PHONY: all burn fv clean sim
|
||||
all: $(SIM_TARGET) $(BIN_TARGET)
|
||||
|
||||
$(BUILD_DIR)/Vtop.cc: $(RTL_SRC)
|
||||
$(call colorecho, "Running verilator")
|
||||
mkdir -p $(BUILD_DIR)
|
||||
$(VERILATOR) --trace -Wall -cc $^ --top-module top -GWIDTH=10\
|
||||
--Mdir $(BUILD_DIR) --timescale-override 10ns/1ns
|
||||
|
||||
$(BUILD_DIR)/Vtop__ALL.a: $(BUILD_DIR)/Vtop.cc
|
||||
make --no-print-directory -C $(BUILD_DIR) -f Vtop.mk
|
||||
|
||||
# std=c++11 flag is needed as of verilator v4.100
|
||||
$(SIM_TARGET): $(SIM_SRC) $(BUILD_DIR)/Vtop__ALL.a
|
||||
$(call colorecho, "Compiling simulation executable")
|
||||
g++ -I$(VINC) -I$(BUILD_DIR) -std=c++14 $(VINC)/verilated.cpp\
|
||||
$(VINC)/verilated_vcd_c.cpp $^ -o $@
|
||||
echo "Run simulation with ./$(SIM_TARGET)"
|
||||
|
||||
$(BUILD_DIR)/top.json: $(RTL_SRC)
|
||||
$(call colorecho, "Synthesizing ...")
|
||||
mkdir -p $(BUILD_DIR)
|
||||
$(YOSYS) -p "synth_ice40 -top top -json build/top.json" -q $^
|
||||
|
||||
$(BIN_TARGET): $(BUILD_DIR)/top.json $(PCF) $(TIMING)
|
||||
$(call colorecho, "Routing and building binary stream ...")
|
||||
$(PNR) -r --hx8k --json $< --package cb132 \
|
||||
--asc $(BUILD_DIR)/top.asc --opt-timing --pcf $(PCF) \
|
||||
--pre-pack $(TIMING) -l $(BUILD_DIR)/pnr_report.txt -q
|
||||
$(IPACK) $(BUILD_DIR)/top.asc $@
|
||||
$(call colorecho, "Done!")
|
||||
|
||||
sim: $(SIM_TARGET)
|
||||
$(call colorecho, "Running simulation")
|
||||
$(SIM_TARGET) && open $(BUILD_DIR)/waveform.vcd
|
||||
|
||||
burn: $(BIN_TARGET)
|
||||
$(BURN) $<
|
||||
|
||||
fv:
|
||||
$(SBY) -f $(FV_SRC) -d $(BUILD_DIR)/fv
|
||||
|
||||
clean:
|
||||
rm -rf $(BUILD_DIR)
|
||||
|
||||
$V.SILENT:
|
||||
8
serialTx-tut5/constraints/iceFUN.pcf
Normal file
8
serialTx-tut5/constraints/iceFUN.pcf
Normal file
@@ -0,0 +1,8 @@
|
||||
# For iceFUN board
|
||||
|
||||
set_io --warn-no-port i_clk P7
|
||||
# set_io --warn-no-port i_start_tx C11
|
||||
# set_io --warn-no-port i_stopN A11
|
||||
# set_io --warn-no-port i_resetN C6
|
||||
|
||||
set_io --warn-no-port o_uart_tx A3
|
||||
1
serialTx-tut5/constraints/timing.py
Normal file
1
serialTx-tut5/constraints/timing.py
Normal file
@@ -0,0 +1 @@
|
||||
ctx.addClock("i_clk", 100)
|
||||
31
serialTx-tut5/rtl/clk_gen.v
Normal file
31
serialTx-tut5/rtl/clk_gen.v
Normal file
@@ -0,0 +1,31 @@
|
||||
`default_nettype none
|
||||
// dummy clock generator, should be replaced by a PLL clock gen eventually
|
||||
module clk_gen #(parameter DIVISION=22)(
|
||||
input wire i_clk,
|
||||
output wire o_clk_100MHz,
|
||||
output wire o_div_clk
|
||||
);
|
||||
|
||||
/* verilator lint_off PINCONNECTEMPTY */
|
||||
/* verilator lint_off PINMISSING */
|
||||
reg [DIVISION-1:0] counter = 0;
|
||||
`ifdef VERILATOR
|
||||
always @(posedge i_clk) begin
|
||||
counter <= counter + 1;
|
||||
end
|
||||
|
||||
assign o_clk_100MHz = i_clk;
|
||||
`else
|
||||
pll_100MHz pll0(.i_clk(i_clk), .o_clk_100MHz(o_clk_100MHz), .o_pll_locked());
|
||||
always @(posedge o_clk_100MHz) begin
|
||||
counter <= counter + 1;
|
||||
end
|
||||
`endif
|
||||
|
||||
assign o_div_clk = counter[DIVISION-1];
|
||||
/* verilator lint_on PINCONNECTEMPTY */
|
||||
/* verilator lint_on PINMISSING */
|
||||
endmodule
|
||||
// Local Variables:
|
||||
// verilog-library-directories:(".." "./rtl" ".")
|
||||
// End:
|
||||
40
serialTx-tut5/rtl/pll_100MHz.v
Normal file
40
serialTx-tut5/rtl/pll_100MHz.v
Normal file
@@ -0,0 +1,40 @@
|
||||
/**
|
||||
* PLL configuration
|
||||
*
|
||||
* This Verilog module was generated automatically
|
||||
* using the icepll tool from the IceStorm project.
|
||||
* Use at your own risk.
|
||||
*
|
||||
* Given input frequency: 12.000 MHz
|
||||
* Requested output frequency: 100.000 MHz
|
||||
* Achieved output frequency: 100.500 MHz
|
||||
*/
|
||||
// this module is skipped by verilator
|
||||
`ifdef VERILATOR
|
||||
`else
|
||||
module pll_100MHz(
|
||||
input i_clk,
|
||||
output o_clk_100MHz,
|
||||
output o_pll_locked
|
||||
);
|
||||
|
||||
wire clk_int;
|
||||
SB_PLL40_CORE #(
|
||||
.FEEDBACK_PATH("SIMPLE"),
|
||||
.DIVR(4'b0000), // DIVR = 0
|
||||
.DIVF(7'b1000010), // DIVF = 66
|
||||
.DIVQ(3'b011), // DIVQ = 3
|
||||
.FILTER_RANGE(3'b001) // FILTER_RANGE = 1
|
||||
) uut (
|
||||
.LOCK(o_pll_locked),
|
||||
.RESETB(1'b1),
|
||||
.BYPASS(1'b0),
|
||||
.REFERENCECLK(i_clk),
|
||||
.PLLOUTCORE(clk_int)
|
||||
);
|
||||
|
||||
SB_GB sbGlobalBuffer_inst( .USER_SIGNAL_TO_GLOBAL_BUFFER(clk_int),
|
||||
.GLOBAL_BUFFER_OUTPUT(o_clk_100MHz));
|
||||
|
||||
endmodule
|
||||
`endif
|
||||
85
serialTx-tut5/rtl/top.v
Normal file
85
serialTx-tut5/rtl/top.v
Normal file
@@ -0,0 +1,85 @@
|
||||
`default_nettype none
|
||||
|
||||
module top #(parameter WIDTH=24)(
|
||||
input wire i_clk,
|
||||
output wire o_uart_tx
|
||||
);
|
||||
parameter CLOCK_RATE_HZ = 100_000_000; // 100MHz clock
|
||||
parameter BAUD_RATE = 115_200; // 115.2 KBaud
|
||||
parameter INITIAL_UART_SETUP = (CLOCK_RATE_HZ/BAUD_RATE);
|
||||
|
||||
wire clk_100MHz;
|
||||
|
||||
/* verilator lint_off PINMISSING */
|
||||
clk_gen #(.DIVISION(26)) clk_gen0 (.o_clk_100MHz (clk_100MHz), .i_clk (i_clk));
|
||||
/* verilator lint_on PINMISSING */
|
||||
|
||||
reg tx_restart = 0;
|
||||
reg [27:0] hz_counter;
|
||||
|
||||
initial hz_counter = 28'h16;
|
||||
always @(posedge clk_100MHz) begin
|
||||
if (hz_counter == 0)
|
||||
hz_counter <= CLOCK_RATE_HZ - 1'b1;
|
||||
else
|
||||
hz_counter <= hz_counter - 1'b1;
|
||||
end
|
||||
|
||||
always @(posedge clk_100MHz)
|
||||
tx_restart <= (hz_counter == 1);
|
||||
|
||||
wire tx_busy;
|
||||
reg tx_stb;
|
||||
reg [3:0] tx_index;
|
||||
reg [7:0] tx_data;
|
||||
|
||||
initial tx_index = 4'h0;
|
||||
always @(posedge clk_100MHz) begin
|
||||
if ((tx_stb)&&(!tx_busy))
|
||||
tx_index <= tx_index + 1'b1;
|
||||
end
|
||||
|
||||
always @(posedge clk_100MHz) begin
|
||||
case(tx_index)
|
||||
4'h0: tx_data <= "H";
|
||||
4'h1: tx_data <= "e";
|
||||
4'h2: tx_data <= "l";
|
||||
4'h3: tx_data <= "l";
|
||||
//
|
||||
4'h4: tx_data <= "o";
|
||||
4'h5: tx_data <= ",";
|
||||
4'h6: tx_data <= " ";
|
||||
4'h7: tx_data <= "W";
|
||||
//
|
||||
4'h8: tx_data <= "o";
|
||||
4'h9: tx_data <= "r";
|
||||
4'ha: tx_data <= "l";
|
||||
4'hb: tx_data <= "d";
|
||||
//
|
||||
4'hc: tx_data <= "!";
|
||||
4'hd: tx_data <= " ";
|
||||
4'he: tx_data <= "\n";
|
||||
4'hf: tx_data <= "\r";
|
||||
//
|
||||
endcase
|
||||
end
|
||||
|
||||
// tx_stb is a request to send a character.
|
||||
initial tx_stb = 1'b0;
|
||||
always @(posedge clk_100MHz) begin
|
||||
if (&tx_restart)
|
||||
tx_stb <= 1'b1;
|
||||
else if ((tx_stb)&&(!tx_busy)&&(tx_index==4'hf))
|
||||
tx_stb <= 1'b0;
|
||||
end
|
||||
|
||||
//
|
||||
// Instantiate a serial port module here
|
||||
//
|
||||
txuart #(INITIAL_UART_SETUP[23:0])
|
||||
transmitter(clk_100MHz, tx_stb, tx_data, o_uart_tx, tx_busy);
|
||||
endmodule
|
||||
|
||||
// Local Variables:
|
||||
// verilog-library-directories:(".." "./rtl" ".")
|
||||
// End:
|
||||
267
serialTx-tut5/rtl/txuart.v
Normal file
267
serialTx-tut5/rtl/txuart.v
Normal file
@@ -0,0 +1,267 @@
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Filename: txuart.v
|
||||
//
|
||||
// Project: Verilog Tutorial Example file
|
||||
//
|
||||
// Purpose: Transmit outputs over a single UART line. This particular UART
|
||||
// implementation has been extremely simplified: it does not handle
|
||||
// generating break conditions, nor does it handle anything other than the
|
||||
// 8N1 (8 data bits, no parity, 1 stop bit) UART sub-protocol.
|
||||
//
|
||||
// To interface with this module, connect it to your system clock, and
|
||||
// pass it the byte of data you wish to transmit. Strobe the i_wr line
|
||||
// high for one cycle, and your data will be off. Wait until the 'o_busy'
|
||||
// line is low before strobing the i_wr line again--this implementation
|
||||
// has NO BUFFER, so strobing i_wr while the core is busy will just
|
||||
// get ignored. The output will be placed on the o_txuart output line.
|
||||
//
|
||||
// There are known deficiencies in the formal proof found within this
|
||||
// module. These have been left behind for you (the student) to fix.
|
||||
//
|
||||
// Creator: Dan Gisselquist, Ph.D.
|
||||
// Gisselquist Technology, LLC
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Written and distributed by Gisselquist Technology, LLC
|
||||
//
|
||||
// This program is hereby granted to the public domain.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
//
|
||||
`default_nettype none
|
||||
//
|
||||
//
|
||||
//
|
||||
module txuart(i_clk, i_wr, i_data, o_uart_tx, o_busy);
|
||||
parameter [23:0] CLOCKS_PER_BAUD = 24'd868;
|
||||
input wire i_clk;
|
||||
input wire i_wr;
|
||||
input wire [7:0] i_data;
|
||||
// And the UART output line itself
|
||||
output wire o_uart_tx;
|
||||
// A line to tell others when we are ready to accept data. If
|
||||
// (i_wr)&&(!o_busy) is ever true, then the core has accepted a byte
|
||||
// for transmission.
|
||||
output reg o_busy;
|
||||
|
||||
// Define several states
|
||||
localparam [3:0] START = 4'h0,
|
||||
BIT_ZERO = 4'h1,
|
||||
BIT_ONE = 4'h2,
|
||||
BIT_TWO = 4'h3,
|
||||
BIT_THREE = 4'h4,
|
||||
BIT_FOUR = 4'h5,
|
||||
BIT_FIVE = 4'h6,
|
||||
BIT_SIX = 4'h7,
|
||||
BIT_SEVEN = 4'h8,
|
||||
LAST = 4'h8,
|
||||
IDLE = 4'hf;
|
||||
|
||||
reg [23:0] counter;
|
||||
reg [3:0] state;
|
||||
reg [8:0] lcl_data;
|
||||
reg baud_stb;
|
||||
|
||||
// o_busy
|
||||
//
|
||||
// This is a register, designed to be true is we are ever busy above.
|
||||
// originally, this was going to be true if we were ever not in the
|
||||
// idle state. The logic has since become more complex, hence we have
|
||||
// a register dedicated to this and just copy out that registers value.
|
||||
|
||||
initial o_busy = 1'b0;
|
||||
initial state = IDLE;
|
||||
always @(posedge i_clk)
|
||||
if ((i_wr)&&(!o_busy))
|
||||
// Immediately start us off with a start bit
|
||||
{ o_busy, state } <= { 1'b1, START };
|
||||
else if (baud_stb)
|
||||
begin
|
||||
if (state == IDLE) // Stay in IDLE
|
||||
{ o_busy, state } <= { 1'b0, IDLE };
|
||||
else if (state < LAST) begin
|
||||
o_busy <= 1'b1;
|
||||
state <= state + 1'b1;
|
||||
end else // Wait for IDLE
|
||||
{ o_busy, state } <= { 1'b1, IDLE };
|
||||
end
|
||||
|
||||
|
||||
|
||||
// lcl_data
|
||||
//
|
||||
// This is our working copy of the i_data register which we use
|
||||
// when transmitting. It is only of interest during transmit, and is
|
||||
// allowed to be whatever at any other time. Hence, if o_busy isn't
|
||||
// true, we can always set it. On the one clock where o_busy isn't
|
||||
// true and i_wr is, we set it and o_busy is true thereafter.
|
||||
// Then, on any baud_stb (i.e. change between baud intervals)
|
||||
// we simple logically shift the register right to grab the next bit.
|
||||
initial lcl_data = 9'h1ff;
|
||||
always @(posedge i_clk)
|
||||
if ((i_wr)&&(!o_busy))
|
||||
lcl_data <= { i_data, 1'b0 };
|
||||
else if (baud_stb)
|
||||
lcl_data <= { 1'b1, lcl_data[8:1] };
|
||||
|
||||
// o_uart_tx
|
||||
//
|
||||
// This is the final result/output desired of this core. It's all
|
||||
// centered about o_uart_tx. This is what finally needs to follow
|
||||
// the UART protocol.
|
||||
//
|
||||
assign o_uart_tx = lcl_data[0];
|
||||
|
||||
|
||||
// All of the above logic is driven by the baud counter. Bits must last
|
||||
// CLOCKS_PER_BAUD in length, and this baud counter is what we use to
|
||||
// make certain of that.
|
||||
//
|
||||
// The basic logic is this: at the beginning of a bit interval, start
|
||||
// the baud counter and set it to count CLOCKS_PER_BAUD. When it gets
|
||||
// to zero, restart it.
|
||||
//
|
||||
// However, comparing a 28'bit number to zero can be rather complex--
|
||||
// especially if we wish to do anything else on that same clock. For
|
||||
// that reason, we create "baud_stb". baud_stb is
|
||||
// nothing more than a flag that is true anytime baud_counter is zero.
|
||||
// It's true when the logic (above) needs to step to the next bit.
|
||||
// Simple enough?
|
||||
//
|
||||
// I wish we could stop there, but there are some other (ugly)
|
||||
// conditions to deal with that offer exceptions to this basic logic.
|
||||
//
|
||||
// 1. When the user has commanded a BREAK across the line, we need to
|
||||
// wait several baud intervals following the break before we start
|
||||
// transmitting, to give any receiver a chance to recognize that we are
|
||||
// out of the break condition, and to know that the next bit will be
|
||||
// a stop bit.
|
||||
//
|
||||
// 2. A reset is similar to a break condition--on both we wait several
|
||||
// baud intervals before allowing a start bit.
|
||||
//
|
||||
// 3. In the idle state, we stop our counter--so that upon a request
|
||||
// to transmit when idle we can start transmitting immediately, rather
|
||||
// than waiting for the end of the next (fictitious and arbitrary) baud
|
||||
// interval.
|
||||
//
|
||||
// When (i_wr)&&(!o_busy)&&(state == IDLE) then we're not only in
|
||||
// the idle state, but we also just accepted a command to start writing
|
||||
// the next word. At this point, the baud counter needs to be reset
|
||||
// to the number of CLOCKS_PER_BAUD, and baud_stb set to zero.
|
||||
//
|
||||
// The logic is a bit twisted here, in that it will only check for the
|
||||
// above condition when baud_stb is false--so as to make
|
||||
// certain the STOP bit is complete.
|
||||
initial baud_stb = 1'b1;
|
||||
initial counter = 0;
|
||||
always @(posedge i_clk)
|
||||
if ((i_wr)&&(!o_busy))
|
||||
begin
|
||||
counter <= CLOCKS_PER_BAUD - 1'b1;
|
||||
baud_stb <= 1'b0;
|
||||
end else if (!baud_stb)
|
||||
begin
|
||||
baud_stb <= (counter == 24'h01);
|
||||
counter <= counter - 1'b1;
|
||||
end else if (state != IDLE)
|
||||
begin
|
||||
counter <= CLOCKS_PER_BAUD - 1'b1;
|
||||
baud_stb <= 1'b0;
|
||||
end
|
||||
|
||||
//
|
||||
//
|
||||
// FORMAL METHODS
|
||||
//
|
||||
//
|
||||
//
|
||||
`ifdef FORMAL
|
||||
|
||||
`ifdef TXUART
|
||||
`define ASSUME assume
|
||||
`else
|
||||
`define ASSUME assert
|
||||
`endif
|
||||
|
||||
// Setup
|
||||
|
||||
reg f_past_valid;
|
||||
|
||||
initial f_past_valid = 1'b0;
|
||||
always @(posedge i_clk)
|
||||
f_past_valid <= 1'b1;
|
||||
|
||||
// Any outstanding request that was busy on the last cycle,
|
||||
// should remain busy on this cycle
|
||||
initial `ASSUME(!i_wr);
|
||||
always @(posedge i_clk)
|
||||
if ((f_past_valid)&&($past(i_wr))&&($past(o_busy)))
|
||||
begin
|
||||
`ASSUME(i_wr == $past(i_wr));
|
||||
`ASSUME(i_data == $past(i_data));
|
||||
end
|
||||
|
||||
//////////////////////////////////
|
||||
//
|
||||
// The contract
|
||||
//
|
||||
//////////////////////////////////
|
||||
|
||||
reg [7:0] fv_data;
|
||||
always @(posedge i_clk)
|
||||
if ((i_wr)&&(!o_busy))
|
||||
fv_data <= i_data;
|
||||
|
||||
always @(posedge i_clk)
|
||||
case(state)
|
||||
IDLE: assert(o_uart_tx == 1'b1);
|
||||
START: assert(o_uart_tx == 1'b0);
|
||||
BIT_ZERO: assert(o_uart_tx == fv_data[0]);
|
||||
BIT_ONE: assert(o_uart_tx == fv_data[1]);
|
||||
BIT_TWO: assert(o_uart_tx == fv_data[2]);
|
||||
BIT_THREE: assert(o_uart_tx == fv_data[3]);
|
||||
BIT_FOUR: assert(o_uart_tx == fv_data[4]);
|
||||
BIT_FIVE: assert(o_uart_tx == fv_data[5]);
|
||||
BIT_SIX: assert(o_uart_tx == fv_data[6]);
|
||||
BIT_SEVEN: assert(o_uart_tx == fv_data[7]);
|
||||
default: assert(0);
|
||||
endcase
|
||||
|
||||
//////////////////////////////////
|
||||
//
|
||||
// Internal state checks
|
||||
//
|
||||
//////////////////////////////////
|
||||
|
||||
|
||||
//
|
||||
// Check the baud counter
|
||||
//
|
||||
|
||||
// The baud_stb needs to be identical to our counter being zero
|
||||
always @(posedge i_clk)
|
||||
assert(baud_stb == (counter == 0));
|
||||
|
||||
|
||||
always @(posedge i_clk)
|
||||
if ((f_past_valid)&&($past(counter != 0)))
|
||||
assert(counter == $past(counter - 1'b1));
|
||||
|
||||
always @(posedge i_clk)
|
||||
assert(counter < CLOCKS_PER_BAUD);
|
||||
|
||||
always @(posedge i_clk)
|
||||
if (!baud_stb)
|
||||
assert(o_busy);
|
||||
|
||||
`endif // FORMAL
|
||||
endmodule
|
||||
|
||||
39
serialTx-tut5/sim/top.cc
Normal file
39
serialTx-tut5/sim/top.cc
Normal file
@@ -0,0 +1,39 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include "verilated.h"
|
||||
#include "verilated_vcd_c.h"
|
||||
#include "Vtop.h"
|
||||
|
||||
void tick(int tickcount, Vtop *tb, VerilatedVcdC* tfp) {
|
||||
tb->eval();
|
||||
if (tfp)
|
||||
tfp->dump(tickcount * 10 - 2);
|
||||
tb->i_clk = 1;
|
||||
tb->eval();
|
||||
if (tfp)
|
||||
tfp->dump(tickcount * 10);
|
||||
tb->i_clk = 0;
|
||||
tb->eval();
|
||||
if (tfp) {
|
||||
tfp->dump(tickcount * 10 + 5);
|
||||
tfp->flush();
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
// Call commandArgs first!
|
||||
Verilated::commandArgs(argc, argv);
|
||||
|
||||
// Instantiate our design
|
||||
Vtop *tb = new Vtop;
|
||||
Verilated::traceEverOn(true);
|
||||
VerilatedVcdC* tfp = new VerilatedVcdC;
|
||||
|
||||
tb->trace(tfp, 00);
|
||||
tfp->open("build/waveform.vcd");
|
||||
|
||||
unsigned tickcount = 0;
|
||||
for (int k = 0; k < (1<<18); k++)
|
||||
tick(++tickcount, tb, tfp);
|
||||
|
||||
}
|
||||
Reference in New Issue
Block a user