Files
iceFun_Projects/serialTx-tut5/rtl/txuart.v

268 lines
7.8 KiB
Verilog

////////////////////////////////////////////////////////////////////////////////
//
// Filename: txuart.v
//
// Project: Verilog Tutorial Example file
//
// Purpose: Transmit outputs over a single UART line. This particular UART
// implementation has been extremely simplified: it does not handle
// generating break conditions, nor does it handle anything other than the
// 8N1 (8 data bits, no parity, 1 stop bit) UART sub-protocol.
//
// To interface with this module, connect it to your system clock, and
// pass it the byte of data you wish to transmit. Strobe the i_wr line
// high for one cycle, and your data will be off. Wait until the 'o_busy'
// line is low before strobing the i_wr line again--this implementation
// has NO BUFFER, so strobing i_wr while the core is busy will just
// get ignored. The output will be placed on the o_txuart output line.
//
// There are known deficiencies in the formal proof found within this
// module. These have been left behind for you (the student) to fix.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Written and distributed by Gisselquist Technology, LLC
//
// This program is hereby granted to the public domain.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
////////////////////////////////////////////////////////////////////////////////
//
//
`default_nettype none
//
//
//
module txuart(i_clk, i_wr, i_data, o_uart_tx, o_busy);
parameter [23:0] CLOCKS_PER_BAUD = 24'd868;
input wire i_clk;
input wire i_wr;
input wire [7:0] i_data;
// And the UART output line itself
output wire o_uart_tx;
// A line to tell others when we are ready to accept data. If
// (i_wr)&&(!o_busy) is ever true, then the core has accepted a byte
// for transmission.
output reg o_busy;
// Define several states
localparam [3:0] START = 4'h0,
BIT_ZERO = 4'h1,
BIT_ONE = 4'h2,
BIT_TWO = 4'h3,
BIT_THREE = 4'h4,
BIT_FOUR = 4'h5,
BIT_FIVE = 4'h6,
BIT_SIX = 4'h7,
BIT_SEVEN = 4'h8,
LAST = 4'h8,
IDLE = 4'hf;
reg [23:0] counter;
reg [3:0] state;
reg [8:0] lcl_data;
reg baud_stb;
// o_busy
//
// This is a register, designed to be true is we are ever busy above.
// originally, this was going to be true if we were ever not in the
// idle state. The logic has since become more complex, hence we have
// a register dedicated to this and just copy out that registers value.
initial o_busy = 1'b0;
initial state = IDLE;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
// Immediately start us off with a start bit
{ o_busy, state } <= { 1'b1, START };
else if (baud_stb)
begin
if (state == IDLE) // Stay in IDLE
{ o_busy, state } <= { 1'b0, IDLE };
else if (state < LAST) begin
o_busy <= 1'b1;
state <= state + 1'b1;
end else // Wait for IDLE
{ o_busy, state } <= { 1'b1, IDLE };
end
// lcl_data
//
// This is our working copy of the i_data register which we use
// when transmitting. It is only of interest during transmit, and is
// allowed to be whatever at any other time. Hence, if o_busy isn't
// true, we can always set it. On the one clock where o_busy isn't
// true and i_wr is, we set it and o_busy is true thereafter.
// Then, on any baud_stb (i.e. change between baud intervals)
// we simple logically shift the register right to grab the next bit.
initial lcl_data = 9'h1ff;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
lcl_data <= { i_data, 1'b0 };
else if (baud_stb)
lcl_data <= { 1'b1, lcl_data[8:1] };
// o_uart_tx
//
// This is the final result/output desired of this core. It's all
// centered about o_uart_tx. This is what finally needs to follow
// the UART protocol.
//
assign o_uart_tx = lcl_data[0];
// All of the above logic is driven by the baud counter. Bits must last
// CLOCKS_PER_BAUD in length, and this baud counter is what we use to
// make certain of that.
//
// The basic logic is this: at the beginning of a bit interval, start
// the baud counter and set it to count CLOCKS_PER_BAUD. When it gets
// to zero, restart it.
//
// However, comparing a 28'bit number to zero can be rather complex--
// especially if we wish to do anything else on that same clock. For
// that reason, we create "baud_stb". baud_stb is
// nothing more than a flag that is true anytime baud_counter is zero.
// It's true when the logic (above) needs to step to the next bit.
// Simple enough?
//
// I wish we could stop there, but there are some other (ugly)
// conditions to deal with that offer exceptions to this basic logic.
//
// 1. When the user has commanded a BREAK across the line, we need to
// wait several baud intervals following the break before we start
// transmitting, to give any receiver a chance to recognize that we are
// out of the break condition, and to know that the next bit will be
// a stop bit.
//
// 2. A reset is similar to a break condition--on both we wait several
// baud intervals before allowing a start bit.
//
// 3. In the idle state, we stop our counter--so that upon a request
// to transmit when idle we can start transmitting immediately, rather
// than waiting for the end of the next (fictitious and arbitrary) baud
// interval.
//
// When (i_wr)&&(!o_busy)&&(state == IDLE) then we're not only in
// the idle state, but we also just accepted a command to start writing
// the next word. At this point, the baud counter needs to be reset
// to the number of CLOCKS_PER_BAUD, and baud_stb set to zero.
//
// The logic is a bit twisted here, in that it will only check for the
// above condition when baud_stb is false--so as to make
// certain the STOP bit is complete.
initial baud_stb = 1'b1;
initial counter = 0;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
begin
counter <= CLOCKS_PER_BAUD - 1'b1;
baud_stb <= 1'b0;
end else if (!baud_stb)
begin
baud_stb <= (counter == 24'h01);
counter <= counter - 1'b1;
end else if (state != IDLE)
begin
counter <= CLOCKS_PER_BAUD - 1'b1;
baud_stb <= 1'b0;
end
//
//
// FORMAL METHODS
//
//
//
`ifdef FORMAL
`ifdef TXUART
`define ASSUME assume
`else
`define ASSUME assert
`endif
// Setup
reg f_past_valid;
initial f_past_valid = 1'b0;
always @(posedge i_clk)
f_past_valid <= 1'b1;
// Any outstanding request that was busy on the last cycle,
// should remain busy on this cycle
initial `ASSUME(!i_wr);
always @(posedge i_clk)
if ((f_past_valid)&&($past(i_wr))&&($past(o_busy)))
begin
`ASSUME(i_wr == $past(i_wr));
`ASSUME(i_data == $past(i_data));
end
//////////////////////////////////
//
// The contract
//
//////////////////////////////////
reg [7:0] fv_data;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
fv_data <= i_data;
always @(posedge i_clk)
case(state)
IDLE: assert(o_uart_tx == 1'b1);
START: assert(o_uart_tx == 1'b0);
BIT_ZERO: assert(o_uart_tx == fv_data[0]);
BIT_ONE: assert(o_uart_tx == fv_data[1]);
BIT_TWO: assert(o_uart_tx == fv_data[2]);
BIT_THREE: assert(o_uart_tx == fv_data[3]);
BIT_FOUR: assert(o_uart_tx == fv_data[4]);
BIT_FIVE: assert(o_uart_tx == fv_data[5]);
BIT_SIX: assert(o_uart_tx == fv_data[6]);
BIT_SEVEN: assert(o_uart_tx == fv_data[7]);
default: assert(0);
endcase
//////////////////////////////////
//
// Internal state checks
//
//////////////////////////////////
//
// Check the baud counter
//
// The baud_stb needs to be identical to our counter being zero
always @(posedge i_clk)
assert(baud_stb == (counter == 0));
always @(posedge i_clk)
if ((f_past_valid)&&($past(counter != 0)))
assert(counter == $past(counter - 1'b1));
always @(posedge i_clk)
assert(counter < CLOCKS_PER_BAUD);
always @(posedge i_clk)
if (!baud_stb)
assert(o_busy);
`endif // FORMAL
endmodule