uart tx using zipcpu tut5 code

This commit is contained in:
2020-10-27 14:50:10 -05:00
parent 568775a169
commit ec6b3431be
8 changed files with 543 additions and 0 deletions

72
serialTx-tut5/Makefile Normal file
View File

@@ -0,0 +1,72 @@
SIM_TARGET = build/top
BIN_TARGET = build/top.bin
PCF = constraints/iceFUN.pcf
TIMING = constraints/timing.py
YOSYS = yosys
PNR = nextpnr-ice40
IPACK = icepack
BURN = iceFUNprog
SBY = sby
VERILATOR=verilator
VERILATOR_ROOT ?= $(shell bash -c 'verilator -V|grep VERILATOR_ROOT | head -1 | sed -e "s/^.*=\s*//"')
VINC := $(VERILATOR_ROOT)/include
RTL_SRC := $(wildcard rtl/*.v)
SIM_SRC := $(wildcard sim/*.cc)
FV_SRC := sim/top.sby
BUILD_DIR := ./build
define colorecho
@tput setaf 6
@echo $1
@tput sgr0
endef
.PHONY: all burn fv clean sim
all: $(SIM_TARGET) $(BIN_TARGET)
$(BUILD_DIR)/Vtop.cc: $(RTL_SRC)
$(call colorecho, "Running verilator")
mkdir -p $(BUILD_DIR)
$(VERILATOR) --trace -Wall -cc $^ --top-module top -GWIDTH=10\
--Mdir $(BUILD_DIR) --timescale-override 10ns/1ns
$(BUILD_DIR)/Vtop__ALL.a: $(BUILD_DIR)/Vtop.cc
make --no-print-directory -C $(BUILD_DIR) -f Vtop.mk
# std=c++11 flag is needed as of verilator v4.100
$(SIM_TARGET): $(SIM_SRC) $(BUILD_DIR)/Vtop__ALL.a
$(call colorecho, "Compiling simulation executable")
g++ -I$(VINC) -I$(BUILD_DIR) -std=c++14 $(VINC)/verilated.cpp\
$(VINC)/verilated_vcd_c.cpp $^ -o $@
echo "Run simulation with ./$(SIM_TARGET)"
$(BUILD_DIR)/top.json: $(RTL_SRC)
$(call colorecho, "Synthesizing ...")
mkdir -p $(BUILD_DIR)
$(YOSYS) -p "synth_ice40 -top top -json build/top.json" -q $^
$(BIN_TARGET): $(BUILD_DIR)/top.json $(PCF) $(TIMING)
$(call colorecho, "Routing and building binary stream ...")
$(PNR) -r --hx8k --json $< --package cb132 \
--asc $(BUILD_DIR)/top.asc --opt-timing --pcf $(PCF) \
--pre-pack $(TIMING) -l $(BUILD_DIR)/pnr_report.txt -q
$(IPACK) $(BUILD_DIR)/top.asc $@
$(call colorecho, "Done!")
sim: $(SIM_TARGET)
$(call colorecho, "Running simulation")
$(SIM_TARGET) && open $(BUILD_DIR)/waveform.vcd
burn: $(BIN_TARGET)
$(BURN) $<
fv:
$(SBY) -f $(FV_SRC) -d $(BUILD_DIR)/fv
clean:
rm -rf $(BUILD_DIR)
$V.SILENT:

View File

@@ -0,0 +1,8 @@
# For iceFUN board
set_io --warn-no-port i_clk P7
# set_io --warn-no-port i_start_tx C11
# set_io --warn-no-port i_stopN A11
# set_io --warn-no-port i_resetN C6
set_io --warn-no-port o_uart_tx A3

View File

@@ -0,0 +1 @@
ctx.addClock("i_clk", 100)

View File

@@ -0,0 +1,31 @@
`default_nettype none
// dummy clock generator, should be replaced by a PLL clock gen eventually
module clk_gen #(parameter DIVISION=22)(
input wire i_clk,
output wire o_clk_100MHz,
output wire o_div_clk
);
/* verilator lint_off PINCONNECTEMPTY */
/* verilator lint_off PINMISSING */
reg [DIVISION-1:0] counter = 0;
`ifdef VERILATOR
always @(posedge i_clk) begin
counter <= counter + 1;
end
assign o_clk_100MHz = i_clk;
`else
pll_100MHz pll0(.i_clk(i_clk), .o_clk_100MHz(o_clk_100MHz), .o_pll_locked());
always @(posedge o_clk_100MHz) begin
counter <= counter + 1;
end
`endif
assign o_div_clk = counter[DIVISION-1];
/* verilator lint_on PINCONNECTEMPTY */
/* verilator lint_on PINMISSING */
endmodule
// Local Variables:
// verilog-library-directories:(".." "./rtl" ".")
// End:

View File

@@ -0,0 +1,40 @@
/**
* PLL configuration
*
* This Verilog module was generated automatically
* using the icepll tool from the IceStorm project.
* Use at your own risk.
*
* Given input frequency: 12.000 MHz
* Requested output frequency: 100.000 MHz
* Achieved output frequency: 100.500 MHz
*/
// this module is skipped by verilator
`ifdef VERILATOR
`else
module pll_100MHz(
input i_clk,
output o_clk_100MHz,
output o_pll_locked
);
wire clk_int;
SB_PLL40_CORE #(
.FEEDBACK_PATH("SIMPLE"),
.DIVR(4'b0000), // DIVR = 0
.DIVF(7'b1000010), // DIVF = 66
.DIVQ(3'b011), // DIVQ = 3
.FILTER_RANGE(3'b001) // FILTER_RANGE = 1
) uut (
.LOCK(o_pll_locked),
.RESETB(1'b1),
.BYPASS(1'b0),
.REFERENCECLK(i_clk),
.PLLOUTCORE(clk_int)
);
SB_GB sbGlobalBuffer_inst( .USER_SIGNAL_TO_GLOBAL_BUFFER(clk_int),
.GLOBAL_BUFFER_OUTPUT(o_clk_100MHz));
endmodule
`endif

85
serialTx-tut5/rtl/top.v Normal file
View File

@@ -0,0 +1,85 @@
`default_nettype none
module top #(parameter WIDTH=24)(
input wire i_clk,
output wire o_uart_tx
);
parameter CLOCK_RATE_HZ = 100_000_000; // 100MHz clock
parameter BAUD_RATE = 115_200; // 115.2 KBaud
parameter INITIAL_UART_SETUP = (CLOCK_RATE_HZ/BAUD_RATE);
wire clk_100MHz;
/* verilator lint_off PINMISSING */
clk_gen #(.DIVISION(26)) clk_gen0 (.o_clk_100MHz (clk_100MHz), .i_clk (i_clk));
/* verilator lint_on PINMISSING */
reg tx_restart = 0;
reg [27:0] hz_counter;
initial hz_counter = 28'h16;
always @(posedge clk_100MHz) begin
if (hz_counter == 0)
hz_counter <= CLOCK_RATE_HZ - 1'b1;
else
hz_counter <= hz_counter - 1'b1;
end
always @(posedge clk_100MHz)
tx_restart <= (hz_counter == 1);
wire tx_busy;
reg tx_stb;
reg [3:0] tx_index;
reg [7:0] tx_data;
initial tx_index = 4'h0;
always @(posedge clk_100MHz) begin
if ((tx_stb)&&(!tx_busy))
tx_index <= tx_index + 1'b1;
end
always @(posedge clk_100MHz) begin
case(tx_index)
4'h0: tx_data <= "H";
4'h1: tx_data <= "e";
4'h2: tx_data <= "l";
4'h3: tx_data <= "l";
//
4'h4: tx_data <= "o";
4'h5: tx_data <= ",";
4'h6: tx_data <= " ";
4'h7: tx_data <= "W";
//
4'h8: tx_data <= "o";
4'h9: tx_data <= "r";
4'ha: tx_data <= "l";
4'hb: tx_data <= "d";
//
4'hc: tx_data <= "!";
4'hd: tx_data <= " ";
4'he: tx_data <= "\n";
4'hf: tx_data <= "\r";
//
endcase
end
// tx_stb is a request to send a character.
initial tx_stb = 1'b0;
always @(posedge clk_100MHz) begin
if (&tx_restart)
tx_stb <= 1'b1;
else if ((tx_stb)&&(!tx_busy)&&(tx_index==4'hf))
tx_stb <= 1'b0;
end
//
// Instantiate a serial port module here
//
txuart #(INITIAL_UART_SETUP[23:0])
transmitter(clk_100MHz, tx_stb, tx_data, o_uart_tx, tx_busy);
endmodule
// Local Variables:
// verilog-library-directories:(".." "./rtl" ".")
// End:

267
serialTx-tut5/rtl/txuart.v Normal file
View File

@@ -0,0 +1,267 @@
////////////////////////////////////////////////////////////////////////////////
//
// Filename: txuart.v
//
// Project: Verilog Tutorial Example file
//
// Purpose: Transmit outputs over a single UART line. This particular UART
// implementation has been extremely simplified: it does not handle
// generating break conditions, nor does it handle anything other than the
// 8N1 (8 data bits, no parity, 1 stop bit) UART sub-protocol.
//
// To interface with this module, connect it to your system clock, and
// pass it the byte of data you wish to transmit. Strobe the i_wr line
// high for one cycle, and your data will be off. Wait until the 'o_busy'
// line is low before strobing the i_wr line again--this implementation
// has NO BUFFER, so strobing i_wr while the core is busy will just
// get ignored. The output will be placed on the o_txuart output line.
//
// There are known deficiencies in the formal proof found within this
// module. These have been left behind for you (the student) to fix.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Written and distributed by Gisselquist Technology, LLC
//
// This program is hereby granted to the public domain.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
////////////////////////////////////////////////////////////////////////////////
//
//
`default_nettype none
//
//
//
module txuart(i_clk, i_wr, i_data, o_uart_tx, o_busy);
parameter [23:0] CLOCKS_PER_BAUD = 24'd868;
input wire i_clk;
input wire i_wr;
input wire [7:0] i_data;
// And the UART output line itself
output wire o_uart_tx;
// A line to tell others when we are ready to accept data. If
// (i_wr)&&(!o_busy) is ever true, then the core has accepted a byte
// for transmission.
output reg o_busy;
// Define several states
localparam [3:0] START = 4'h0,
BIT_ZERO = 4'h1,
BIT_ONE = 4'h2,
BIT_TWO = 4'h3,
BIT_THREE = 4'h4,
BIT_FOUR = 4'h5,
BIT_FIVE = 4'h6,
BIT_SIX = 4'h7,
BIT_SEVEN = 4'h8,
LAST = 4'h8,
IDLE = 4'hf;
reg [23:0] counter;
reg [3:0] state;
reg [8:0] lcl_data;
reg baud_stb;
// o_busy
//
// This is a register, designed to be true is we are ever busy above.
// originally, this was going to be true if we were ever not in the
// idle state. The logic has since become more complex, hence we have
// a register dedicated to this and just copy out that registers value.
initial o_busy = 1'b0;
initial state = IDLE;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
// Immediately start us off with a start bit
{ o_busy, state } <= { 1'b1, START };
else if (baud_stb)
begin
if (state == IDLE) // Stay in IDLE
{ o_busy, state } <= { 1'b0, IDLE };
else if (state < LAST) begin
o_busy <= 1'b1;
state <= state + 1'b1;
end else // Wait for IDLE
{ o_busy, state } <= { 1'b1, IDLE };
end
// lcl_data
//
// This is our working copy of the i_data register which we use
// when transmitting. It is only of interest during transmit, and is
// allowed to be whatever at any other time. Hence, if o_busy isn't
// true, we can always set it. On the one clock where o_busy isn't
// true and i_wr is, we set it and o_busy is true thereafter.
// Then, on any baud_stb (i.e. change between baud intervals)
// we simple logically shift the register right to grab the next bit.
initial lcl_data = 9'h1ff;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
lcl_data <= { i_data, 1'b0 };
else if (baud_stb)
lcl_data <= { 1'b1, lcl_data[8:1] };
// o_uart_tx
//
// This is the final result/output desired of this core. It's all
// centered about o_uart_tx. This is what finally needs to follow
// the UART protocol.
//
assign o_uart_tx = lcl_data[0];
// All of the above logic is driven by the baud counter. Bits must last
// CLOCKS_PER_BAUD in length, and this baud counter is what we use to
// make certain of that.
//
// The basic logic is this: at the beginning of a bit interval, start
// the baud counter and set it to count CLOCKS_PER_BAUD. When it gets
// to zero, restart it.
//
// However, comparing a 28'bit number to zero can be rather complex--
// especially if we wish to do anything else on that same clock. For
// that reason, we create "baud_stb". baud_stb is
// nothing more than a flag that is true anytime baud_counter is zero.
// It's true when the logic (above) needs to step to the next bit.
// Simple enough?
//
// I wish we could stop there, but there are some other (ugly)
// conditions to deal with that offer exceptions to this basic logic.
//
// 1. When the user has commanded a BREAK across the line, we need to
// wait several baud intervals following the break before we start
// transmitting, to give any receiver a chance to recognize that we are
// out of the break condition, and to know that the next bit will be
// a stop bit.
//
// 2. A reset is similar to a break condition--on both we wait several
// baud intervals before allowing a start bit.
//
// 3. In the idle state, we stop our counter--so that upon a request
// to transmit when idle we can start transmitting immediately, rather
// than waiting for the end of the next (fictitious and arbitrary) baud
// interval.
//
// When (i_wr)&&(!o_busy)&&(state == IDLE) then we're not only in
// the idle state, but we also just accepted a command to start writing
// the next word. At this point, the baud counter needs to be reset
// to the number of CLOCKS_PER_BAUD, and baud_stb set to zero.
//
// The logic is a bit twisted here, in that it will only check for the
// above condition when baud_stb is false--so as to make
// certain the STOP bit is complete.
initial baud_stb = 1'b1;
initial counter = 0;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
begin
counter <= CLOCKS_PER_BAUD - 1'b1;
baud_stb <= 1'b0;
end else if (!baud_stb)
begin
baud_stb <= (counter == 24'h01);
counter <= counter - 1'b1;
end else if (state != IDLE)
begin
counter <= CLOCKS_PER_BAUD - 1'b1;
baud_stb <= 1'b0;
end
//
//
// FORMAL METHODS
//
//
//
`ifdef FORMAL
`ifdef TXUART
`define ASSUME assume
`else
`define ASSUME assert
`endif
// Setup
reg f_past_valid;
initial f_past_valid = 1'b0;
always @(posedge i_clk)
f_past_valid <= 1'b1;
// Any outstanding request that was busy on the last cycle,
// should remain busy on this cycle
initial `ASSUME(!i_wr);
always @(posedge i_clk)
if ((f_past_valid)&&($past(i_wr))&&($past(o_busy)))
begin
`ASSUME(i_wr == $past(i_wr));
`ASSUME(i_data == $past(i_data));
end
//////////////////////////////////
//
// The contract
//
//////////////////////////////////
reg [7:0] fv_data;
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
fv_data <= i_data;
always @(posedge i_clk)
case(state)
IDLE: assert(o_uart_tx == 1'b1);
START: assert(o_uart_tx == 1'b0);
BIT_ZERO: assert(o_uart_tx == fv_data[0]);
BIT_ONE: assert(o_uart_tx == fv_data[1]);
BIT_TWO: assert(o_uart_tx == fv_data[2]);
BIT_THREE: assert(o_uart_tx == fv_data[3]);
BIT_FOUR: assert(o_uart_tx == fv_data[4]);
BIT_FIVE: assert(o_uart_tx == fv_data[5]);
BIT_SIX: assert(o_uart_tx == fv_data[6]);
BIT_SEVEN: assert(o_uart_tx == fv_data[7]);
default: assert(0);
endcase
//////////////////////////////////
//
// Internal state checks
//
//////////////////////////////////
//
// Check the baud counter
//
// The baud_stb needs to be identical to our counter being zero
always @(posedge i_clk)
assert(baud_stb == (counter == 0));
always @(posedge i_clk)
if ((f_past_valid)&&($past(counter != 0)))
assert(counter == $past(counter - 1'b1));
always @(posedge i_clk)
assert(counter < CLOCKS_PER_BAUD);
always @(posedge i_clk)
if (!baud_stb)
assert(o_busy);
`endif // FORMAL
endmodule

39
serialTx-tut5/sim/top.cc Normal file
View File

@@ -0,0 +1,39 @@
#include <stdio.h>
#include <stdlib.h>
#include "verilated.h"
#include "verilated_vcd_c.h"
#include "Vtop.h"
void tick(int tickcount, Vtop *tb, VerilatedVcdC* tfp) {
tb->eval();
if (tfp)
tfp->dump(tickcount * 10 - 2);
tb->i_clk = 1;
tb->eval();
if (tfp)
tfp->dump(tickcount * 10);
tb->i_clk = 0;
tb->eval();
if (tfp) {
tfp->dump(tickcount * 10 + 5);
tfp->flush();
}
}
int main(int argc, char **argv) {
// Call commandArgs first!
Verilated::commandArgs(argc, argv);
// Instantiate our design
Vtop *tb = new Vtop;
Verilated::traceEverOn(true);
VerilatedVcdC* tfp = new VerilatedVcdC;
tb->trace(tfp, 00);
tfp->open("build/waveform.vcd");
unsigned tickcount = 0;
for (int k = 0; k < (1<<18); k++)
tick(++tickcount, tb, tfp);
}