start stm study report
This commit is contained in:
15
stm_study_201611/Makefile
Normal file
15
stm_study_201611/Makefile
Normal file
@@ -0,0 +1,15 @@
|
|||||||
|
DOC=stm_study
|
||||||
|
INPUT=$(DOC).tex
|
||||||
|
TARGET=$(DOC).pdf
|
||||||
|
REF=ref.bib
|
||||||
|
TEX=pdflatex -shell-escape
|
||||||
|
BIB=bibtex
|
||||||
|
|
||||||
|
default: $(TARGET)
|
||||||
|
|
||||||
|
$(TARGET): $(INPUT) Makefile
|
||||||
|
$(TEX) $< && $(BIB) $(DOC) && $(TEX) $< && $(TEX) $<
|
||||||
|
|
||||||
|
clean:
|
||||||
|
rm -f $(DOC).{pdf,out,aux,log}
|
||||||
|
rm -f *.{pdf,out,aux,log,bbl,blg}
|
||||||
BIN
stm_study_201611/figs/stm_geo_all.png
Normal file
BIN
stm_study_201611/figs/stm_geo_all.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 205 KiB |
1016
stm_study_201611/h-physrev.bst
Normal file
1016
stm_study_201611/h-physrev.bst
Normal file
File diff suppressed because it is too large
Load Diff
181
stm_study_201611/listings/G4EmCaptureCascade.cc
Normal file
181
stm_study_201611/listings/G4EmCaptureCascade.cc
Normal file
@@ -0,0 +1,181 @@
|
|||||||
|
//
|
||||||
|
// ********************************************************************
|
||||||
|
// * License and Disclaimer *
|
||||||
|
// * *
|
||||||
|
// * The Geant4 software is copyright of the Copyright Holders of *
|
||||||
|
// * the Geant4 Collaboration. It is provided under the terms and *
|
||||||
|
// * conditions of the Geant4 Software License, included in the file *
|
||||||
|
// * LICENSE and available at http://cern.ch/geant4/license . These *
|
||||||
|
// * include a list of copyright holders. *
|
||||||
|
// * *
|
||||||
|
// * Neither the authors of this software system, nor their employing *
|
||||||
|
// * institutes,nor the agencies providing financial support for this *
|
||||||
|
// * work make any representation or warranty, express or implied, *
|
||||||
|
// * regarding this software system or assume any liability for its *
|
||||||
|
// * use. Please see the license in the file LICENSE and URL above *
|
||||||
|
// * for the full disclaimer and the limitation of liability. *
|
||||||
|
// * *
|
||||||
|
// * This code implementation is the result of the scientific and *
|
||||||
|
// * technical work of the GEANT4 collaboration. *
|
||||||
|
// * By using, copying, modifying or distributing the software (or *
|
||||||
|
// * any work based on the software) you agree to acknowledge its *
|
||||||
|
// * use in resulting scientific publications, and indicate your *
|
||||||
|
// * acceptance of all terms of the Geant4 Software license. *
|
||||||
|
// ********************************************************************
|
||||||
|
//
|
||||||
|
// $Id: G4EmCaptureCascade.cc 101422 2016-11-17 10:41:23Z gcosmo $
|
||||||
|
//
|
||||||
|
//-----------------------------------------------------------------------------
|
||||||
|
//
|
||||||
|
// GEANT4 Class file
|
||||||
|
//
|
||||||
|
// File name: G4EmCaptureCascade
|
||||||
|
//
|
||||||
|
// Author: V.Ivanchenko (Vladimir.Ivantchenko@cern.ch)
|
||||||
|
//
|
||||||
|
// Creation date: 22 April 2012 on base of G4MuMinusCaptureCascade
|
||||||
|
//
|
||||||
|
//
|
||||||
|
//-----------------------------------------------------------------------------
|
||||||
|
//
|
||||||
|
// Modifications:
|
||||||
|
//
|
||||||
|
//-----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
#include "G4EmCaptureCascade.hh"
|
||||||
|
#include "G4PhysicalConstants.hh"
|
||||||
|
#include "G4SystemOfUnits.hh"
|
||||||
|
#include "Randomize.hh"
|
||||||
|
#include "G4MuonMinus.hh"
|
||||||
|
#include "G4Electron.hh"
|
||||||
|
#include "G4Gamma.hh"
|
||||||
|
#include "G4NucleiProperties.hh"
|
||||||
|
|
||||||
|
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
||||||
|
|
||||||
|
G4EmCaptureCascade::G4EmCaptureCascade()
|
||||||
|
: G4HadronicInteraction("emCaptureCascade")
|
||||||
|
{
|
||||||
|
theElectron = G4Electron::Electron();
|
||||||
|
theGamma = G4Gamma::Gamma();
|
||||||
|
fMuMass = G4MuonMinus::MuonMinus()->GetPDGMass();
|
||||||
|
fTime = 0.0;
|
||||||
|
|
||||||
|
// Calculate the Energy of K Mesoatom Level for this Element using
|
||||||
|
// the Energy of Hydrogen Atom taken into account finite size of the
|
||||||
|
// nucleus
|
||||||
|
static const G4int nlevels = 28;
|
||||||
|
static const G4int listK[nlevels] = {
|
||||||
|
1, 2, 4, 6, 8, 11, 14, 17, 18, 21, 24,
|
||||||
|
26, 29, 32, 38, 40, 41, 44, 49, 53, 55,
|
||||||
|
60, 65, 70, 75, 81, 85, 92};
|
||||||
|
static const G4double listKEnergy[nlevels] = {
|
||||||
|
0.00275, 0.011, 0.043, 0.098, 0.173, 0.326,
|
||||||
|
0.524, 0.765, 0.853, 1.146, 1.472,
|
||||||
|
1.708, 2.081, 2.475, 3.323, 3.627,
|
||||||
|
3.779, 4.237, 5.016, 5.647, 5.966,
|
||||||
|
6.793, 7.602, 8.421, 9.249, 10.222,
|
||||||
|
10.923,11.984};
|
||||||
|
|
||||||
|
fKLevelEnergy[0] = 0.0;
|
||||||
|
fKLevelEnergy[1] = listKEnergy[0];
|
||||||
|
G4int idx = 1;
|
||||||
|
for(G4int i=1; i<nlevels; ++i) {
|
||||||
|
G4int z1 = listK[idx];
|
||||||
|
G4int z2 = listK[i];
|
||||||
|
if(z1+1 < z2) {
|
||||||
|
G4double dz = G4double(z2 - z1);
|
||||||
|
G4double y1 = listKEnergy[idx]/G4double(z1*z1);
|
||||||
|
G4double y2 = listKEnergy[i]/G4double(z2*z2);
|
||||||
|
for(G4int z=z1+1; z<z2; ++z) {
|
||||||
|
fKLevelEnergy[z] = (y1 + (y2 - y1)*(z - z1)/dz)*z*z;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fKLevelEnergy[z2] = listKEnergy[i];
|
||||||
|
idx = i;
|
||||||
|
}
|
||||||
|
for(G4int i = 0; i<14; ++i) { fLevelEnergy[i] = 0.0; }
|
||||||
|
}
|
||||||
|
|
||||||
|
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
||||||
|
|
||||||
|
G4EmCaptureCascade::~G4EmCaptureCascade()
|
||||||
|
{}
|
||||||
|
|
||||||
|
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
||||||
|
|
||||||
|
G4HadFinalState*
|
||||||
|
G4EmCaptureCascade::ApplyYourself(const G4HadProjectile& projectile,
|
||||||
|
G4Nucleus& targetNucleus)
|
||||||
|
{
|
||||||
|
result.Clear();
|
||||||
|
result.SetStatusChange(isAlive);
|
||||||
|
fTime = projectile.GetGlobalTime();
|
||||||
|
|
||||||
|
G4int Z = targetNucleus.GetZ_asInt();
|
||||||
|
G4int A = targetNucleus.GetA_asInt();
|
||||||
|
G4double massA = G4NucleiProperties::GetNuclearMass(A, Z);
|
||||||
|
G4double mass = fMuMass * massA / (fMuMass + massA) ;
|
||||||
|
G4double e = 13.6 * eV * (Z * Z) * mass/ electron_mass_c2;
|
||||||
|
|
||||||
|
// precise corrections of energy only for K-shell
|
||||||
|
fLevelEnergy[0] = fKLevelEnergy[std::min(Z, 92)];
|
||||||
|
for(G4int i=1; i<14; ++i) {
|
||||||
|
fLevelEnergy[i] = e/(G4double)((i+1)*(i+1));
|
||||||
|
}
|
||||||
|
|
||||||
|
G4int nElec = Z;
|
||||||
|
G4int nAuger = 1;
|
||||||
|
G4int nLevel = 13;
|
||||||
|
G4double pGamma = (Z*Z*Z*Z);
|
||||||
|
|
||||||
|
// Capture on 14-th level
|
||||||
|
G4double edep = fLevelEnergy[13];
|
||||||
|
AddNewParticle(theElectron,edep);
|
||||||
|
G4double deltaE;
|
||||||
|
|
||||||
|
// Emit new photon or electron
|
||||||
|
// Simplified model for probabilities
|
||||||
|
// N.C.Mukhopadhyay Phy. Rep. 30 (1977) 1.
|
||||||
|
do {
|
||||||
|
|
||||||
|
// case of Auger electrons
|
||||||
|
if((nAuger < nElec) && ((pGamma + 10000.0) * G4UniformRand() < 10000.0) ) {
|
||||||
|
++nAuger;
|
||||||
|
deltaE = fLevelEnergy[nLevel-1] - fLevelEnergy[nLevel];
|
||||||
|
--nLevel;
|
||||||
|
AddNewParticle(theElectron, deltaE);
|
||||||
|
|
||||||
|
} else {
|
||||||
|
|
||||||
|
// Case of photon cascade, probabilities from
|
||||||
|
// C.S.Wu and L.Wilets, Ann. Rev. Nuclear Sci. 19 (1969) 527.
|
||||||
|
|
||||||
|
G4double var = (10.0 + G4double(nLevel - 1) ) * G4UniformRand();
|
||||||
|
G4int iLevel = nLevel - 1 ;
|
||||||
|
if(var > 10.0) iLevel -= G4int(var-10.0) + 1;
|
||||||
|
if( iLevel < 0 ) iLevel = 0;
|
||||||
|
deltaE = fLevelEnergy[iLevel] - fLevelEnergy[nLevel];
|
||||||
|
nLevel = iLevel;
|
||||||
|
AddNewParticle(theGamma, deltaE);
|
||||||
|
}
|
||||||
|
edep += deltaE;
|
||||||
|
|
||||||
|
// Loop checking, 06-Aug-2015, Vladimir Ivanchenko
|
||||||
|
} while( nLevel > 0 );
|
||||||
|
|
||||||
|
result.SetLocalEnergyDeposit(edep);
|
||||||
|
return &result;
|
||||||
|
}
|
||||||
|
|
||||||
|
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
||||||
|
|
||||||
|
void G4EmCaptureCascade::ModelDescription(std::ostream& outFile) const
|
||||||
|
{
|
||||||
|
outFile << "Simulation of electromagnetic cascade from capture level"
|
||||||
|
<< " to K-shell of the mesonic atom\n."
|
||||||
|
<< "Probabilities of gamma and Auger transitions from\n"
|
||||||
|
<< " N.C.Mukhopadhyay Phys. Rep. 30 (1977) 1.\n";
|
||||||
|
}
|
||||||
|
|
||||||
|
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
||||||
10
stm_study_201611/listings/code_dir_tree.sh
Normal file
10
stm_study_201611/listings/code_dir_tree.sh
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
@mu2egpvm02:STM_study_201611 namtran $ pwd
|
||||||
|
/mu2e/app/users/namtran/STM_study_201611
|
||||||
|
@mu2egpvm02:STM_study_201611 namtran $ tree -L 1
|
||||||
|
.
|
||||||
|
|-- analysis
|
||||||
|
|-- script
|
||||||
|
|-- step00
|
||||||
|
`-- step01
|
||||||
|
|
||||||
|
4 directories, 0 files
|
||||||
2978
stm_study_201611/stm_study.bib
Normal file
2978
stm_study_201611/stm_study.bib
Normal file
File diff suppressed because it is too large
Load Diff
229
stm_study_201611/stm_study.tex
Normal file
229
stm_study_201611/stm_study.tex
Normal file
@@ -0,0 +1,229 @@
|
|||||||
|
\documentclass[11pt]{article}
|
||||||
|
\usepackage{mhchem}
|
||||||
|
\usepackage{booktabs}
|
||||||
|
\usepackage{multirow}
|
||||||
|
\usepackage{textcomp}
|
||||||
|
\usepackage{epsfig}
|
||||||
|
\usepackage{hyperref}
|
||||||
|
\usepackage[noabbrev, capitalize]{cleveref} % hyperref must be loaded first
|
||||||
|
\usepackage[
|
||||||
|
detect-weight=true,
|
||||||
|
per=slash,
|
||||||
|
detect-family=true,
|
||||||
|
separate-uncertainty=true]{siunitx}
|
||||||
|
% \usepackage{listings}
|
||||||
|
\usepackage{xcolor}
|
||||||
|
\usepackage{upquote}
|
||||||
|
% \usepackage{minted}
|
||||||
|
\usepackage{tcolorbox}
|
||||||
|
\tcbuselibrary{minted,skins}
|
||||||
|
\usemintedstyle{monokai}
|
||||||
|
|
||||||
|
\definecolor{greybg}{rgb}{0.25,0.25,0.25}
|
||||||
|
\newtcblisting{bashcode}{
|
||||||
|
listing engine=minted,
|
||||||
|
colback=bashcodebg,
|
||||||
|
colframe=black!70,
|
||||||
|
listing only,
|
||||||
|
minted style=colorful,
|
||||||
|
minted language=bash,
|
||||||
|
minted options={linenos=true,texcl=true},
|
||||||
|
left=1mm,
|
||||||
|
}
|
||||||
|
|
||||||
|
% \DeclareSIUnit\eVperc{\eV\per\clight}
|
||||||
|
% \DeclareSIUnit\clight{\text{\ensuremath{c}}}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\title{Hit rate estimation for STM detectors}
|
||||||
|
\author{Nam H. Tran \\ Boston University}
|
||||||
|
\date{\today}
|
||||||
|
\maketitle
|
||||||
|
|
||||||
|
\begin{abstract}
|
||||||
|
This report presents estimated hit rate on STM detectors with the updated
|
||||||
|
geometry in Offline version TODO.
|
||||||
|
\end{abstract}
|
||||||
|
\section{Overview}
|
||||||
|
\label{sec:overview}
|
||||||
|
In order to measure the eponymous rate of the Mu2e experiment, the number of
|
||||||
|
stopped muons needs to be known to about \SI{10}{\percent}. The most promising
|
||||||
|
schemes have involved photon detectors far downstream of the Muon Beam Stop
|
||||||
|
measuring emissions from the Stopping Target (ST) at different times with
|
||||||
|
respect to each pulse of muons stopping in the target. There are three
|
||||||
|
categories we explore here for this stopping-target monitor (STM):
|
||||||
|
\begin{itemize}
|
||||||
|
\item Prompt: X-rays emitted when the muon comes to rest in the ST and is
|
||||||
|
captured into atomic orbit (atomic capture, sometimes referred to as “muon
|
||||||
|
stop” in this text). These X-rays are emitted essentially O(ps) with the
|
||||||
|
atomic capture time.
|
||||||
|
\item Semiprompt: $\gamma$-rays emitted upon nuclear capture (sometimes
|
||||||
|
referred to simply as ``capture'' in this text) of the muon after stop.
|
||||||
|
These exhibit timing characteristics of the muonic lifetime ($\tau
|
||||||
|
= \SI{864}{\ns}$).
|
||||||
|
\item Delayed: $\gamma$-rays from activated daughters resulting from muon
|
||||||
|
nuclear capture in the ST.
|
||||||
|
\end{itemize}
|
||||||
|
The baseline design of the STM has been described by Miller et
|
||||||
|
al~\cite{Miller2016}, the estimated hit rate on STM detector was about
|
||||||
|
\SI{1.1}{\kHz} in the time window \SIrange{200}{1695}{\ns} from arrival time of
|
||||||
|
a proton bunch. But this design would cause a high hit rate on the Cosmic
|
||||||
|
Ray Veto (CRV) system, therefore changes have been made in the Offline version
|
||||||
|
v6\textunderscore 0\textunderscore 2 by the CRV team to reduce the CRV hit
|
||||||
|
rate. The goal of this study is to re-estimate hit rates on STM detectors in
|
||||||
|
this new geometry.
|
||||||
|
|
||||||
|
The actual changes relevant to the STM are:
|
||||||
|
\begin{itemize}
|
||||||
|
\item \SI{10}{\mm} polyethylene liner added to CRV shielding,
|
||||||
|
\item field-of-view (FOV) collimator absorber thickness reduced to
|
||||||
|
\SI{10}{\mm} (from \SI{20}{\mm}).
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\section{Simulation details}
|
||||||
|
\label{sec:simulation_details}
|
||||||
|
The study was done using Mu2e Offline version v6\textunderscore
|
||||||
|
0\textunderscore 2 (released on Oct 16,
|
||||||
|
2016), hashtag \texttt{3d1e9154d7}. The simulation starts from the entrance of
|
||||||
|
TS5 (see \cref{fig:stm_geo_all}), taking \texttt{cd3-beam-g4s2-mubeam.0728a}
|
||||||
|
dataset as input. The dataset contains 5098 files, each corresponds to
|
||||||
|
\num{1e6} proton-on-target (POT). The dataset were reused 16 times with
|
||||||
|
different random seeds, where \SI{97}{\percent} of runs succeeded, equivalent
|
||||||
|
to \num{8e11} POTs.
|
||||||
|
|
||||||
|
\begin{figure}[htbp]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=1.0\textwidth]{figs/stm_geo_all}
|
||||||
|
\caption{Simulation geometry showing the DS region on the left, sweeper magnet,
|
||||||
|
FOV collimator, spot-size collimator, and the STM detectors on the right.
|
||||||
|
Particles saved in the input files are shoot from the TS5 (orange circle),
|
||||||
|
and transported to the STM region.}
|
||||||
|
\label{fig:stm_geo_all}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
There were 8 virtual detectors (VD) in STM region enabled in this study, their
|
||||||
|
identification numbers (\texttt{vdid}), locations, and abbreviation names
|
||||||
|
(appear in the simulation output) are listed in \cref{tab:vds_list}.
|
||||||
|
Information recorded by the VDs includes: particle type (\texttt{pdgid}),
|
||||||
|
global and local coordinates, time, kinetic energy, and parent particle type.
|
||||||
|
Only particles considered important to the STM, namely electrons,
|
||||||
|
positrons, negative and positive muons, neutrons and photons, were written to
|
||||||
|
the output file.
|
||||||
|
|
||||||
|
\begin{table}[htbp]
|
||||||
|
\centering
|
||||||
|
\caption{List of virtual detectors read out in this study}
|
||||||
|
\label{tab:vds_list}
|
||||||
|
\begin{tabular}{@{}ccll@{}}
|
||||||
|
\toprule
|
||||||
|
&VDID & Location & Abbreviation \\
|
||||||
|
\midrule
|
||||||
|
1 & 81 & Exit of neutron shield of the DS & DSNeutronShieldExit \\
|
||||||
|
2 & 86 & Upstream of the STM system & STM\textunderscore UpStr \\
|
||||||
|
3 & 87 & Downstream of the sweeper magnet & STM\textunderscore MagDnStr \\
|
||||||
|
4 & 101 & Upstream of the spot-size collimator & STM\textunderscore SpotSizeCollUpStr \\
|
||||||
|
5 & 88 & Downstream of the spot-size collimator& STM\textunderscore CollDnStr \\
|
||||||
|
6 & 89 & Upstream of the STM detector 1 & STM\textunderscore Det1UpStr \\
|
||||||
|
7 & 90 & Upstream of the STM detector 2 & STM\textunderscore Det2UpStr \\
|
||||||
|
8 & 100 & Downstream of the FOV collimator & STM\textunderscore FieldOfViewCollDnStr \\
|
||||||
|
\bottomrule
|
||||||
|
\end{tabular}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
\section{Simulation and analysis code}
|
||||||
|
\label{sec:simulation_and_analysis_code}
|
||||||
|
|
||||||
|
The simulation and analysis code are located at:
|
||||||
|
\url{/mu2e/app/users/namtran/STM_study_201611}.
|
||||||
|
|
||||||
|
% \lstinputlisting[language=bash,frame=single]{listings/code_dir_tree.sh}
|
||||||
|
% \inputminted{bash}{listings/code_dir_tree.sh}
|
||||||
|
\tcbinputlisting{%
|
||||||
|
listing file=listings/code_dir_tree.sh, colback=red!5!white,
|
||||||
|
colframe=red!25, left=6mm,
|
||||||
|
minted options={style=tcblatex, numbers=left, numberstyle=\tiny\color{red!75!black}}
|
||||||
|
}
|
||||||
|
|
||||||
|
\texttt{step00} contains configuration files for this simulation and a script to
|
||||||
|
submit all 5098 jobs (correspond to number of input files) to the FermiGrid.
|
||||||
|
It took about 14 hours to complete a job in average.
|
||||||
|
|
||||||
|
The \texttt{analysis} folder contains a script
|
||||||
|
(\texttt{run\textunderscore statistics.sh}) which checks if a job has finished
|
||||||
|
successfully, and makes a list of such runs.
|
||||||
|
There is a simple analysis code (\texttt{main.cc}) to read the VD records and
|
||||||
|
make plots.
|
||||||
|
|
||||||
|
\section{Results}
|
||||||
|
\label{sec:results}
|
||||||
|
\subsection{STM detector spectra}
|
||||||
|
\label{sub:stm_detector_spectra}
|
||||||
|
|
||||||
|
Energy spectrum of particles hitting STM detectors are presented in
|
||||||
|
\cref{fig:stm_det_ke}. There were not many hits, and only the annihilation
|
||||||
|
peak stands out. Most of the particles are photons as shown in
|
||||||
|
\cref{fig:stm_det_ptype}.
|
||||||
|
\begin{figure}[htbp]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.7\textwidth]{figs/ke_det1UpStr}
|
||||||
|
\includegraphics[width=0.7\textwidth]{figs/ke_det2UpStr}
|
||||||
|
\caption{Kinetic energy of particles hitting STM detectors 1 (top), and
|
||||||
|
2 (bottom).}
|
||||||
|
\label{fig:stm_det_ke}
|
||||||
|
\end{figure}
|
||||||
|
\begin{figure}[htbp]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.7\textwidth]{figs/ke_pdg_det1UpStr}
|
||||||
|
\includegraphics[width=0.7\textwidth]{figs/ke_pdg_det2UpStr}
|
||||||
|
\caption{Kinetic energy and type of particles hitting STM detectors 1 (top),
|
||||||
|
and 2 (bottom).}
|
||||||
|
\label{fig:stm_det_ptype}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\subsection{STM detector hit rate estimation}
|
||||||
|
\label{sub:stm_detector_hit_rate_estimation}
|
||||||
|
The average number of hits on a STM detector per POT is:
|
||||||
|
\begin{equation}
|
||||||
|
\frac{888 + 888}{2 \times 8 \times 10^{11}} = 8.7 \times 10^{-9}.
|
||||||
|
\end{equation}
|
||||||
|
There are 3.1 POTs per proton bunch, so the number of hits per bunch is:
|
||||||
|
\begin{equation}
|
||||||
|
8.7 \times 10^{-9} \times 3.1 \times 10^7 = 0.27
|
||||||
|
\end{equation}
|
||||||
|
The instantaneous hit rate, assuming an interval of \SI{1695}{\ns} between
|
||||||
|
bunches, is:
|
||||||
|
\begin{equation}
|
||||||
|
\frac{0.27}{1695\times 10^{-9}} = \SI{159e3}{\Hz}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\appendix
|
||||||
|
\section{How to run the simulation and analyze data}
|
||||||
|
\label{sec:how_to_run_the_simulation_and_analyze_data}
|
||||||
|
|
||||||
|
\section{Muonic X-rays in Geant4}
|
||||||
|
\label{sec:muonic_x_rays_in_geant4}
|
||||||
|
The muonic energy levels and transition probabilities were calculated using
|
||||||
|
a simple model described by Mukhopadhyay~\cite{Mukhopadhyay.1977}.
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item Energies of K-shell electrons were precisely corrected based on
|
||||||
|
that of hydrogen atom, taking finite size of the nucleus into account
|
||||||
|
% \lstinputlisting[
|
||||||
|
% language=c++, firstline=64, lastline=93,firstnumber=64,
|
||||||
|
% breaklines=true, breakatwhitespace=true,
|
||||||
|
% frame=single]{listings/G4EmCaptureCascade.cc}
|
||||||
|
|
||||||
|
\inputminted[
|
||||||
|
bgcolor=greybg,
|
||||||
|
breaklines=true,
|
||||||
|
stepnumber=5,
|
||||||
|
linenos=true,
|
||||||
|
firstline=64,
|
||||||
|
fontsize=\footnotesize,
|
||||||
|
lastline=93]{c++}{listings/G4EmCaptureCascade.cc}
|
||||||
|
\item Energies of
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\bibliographystyle{h-physrev}
|
||||||
|
\bibliography{stm_study}
|
||||||
|
\end{document}
|
||||||
Reference in New Issue
Block a user