1 Commits

Author SHA1 Message Date
556a79e705 tut4 with strobe, stuck at the last transition 2020-10-25 17:55:16 -05:00
18 changed files with 141 additions and 608 deletions

View File

@@ -5,25 +5,7 @@ module clk_gen(
output wire o_clk output wire o_clk
); );
// assign o_clk = i_clk; assign o_clk = i_clk;
reg [31:0] counter;
reg buf_clk;
parameter CLK_RATE_HZ = 12_000_000;
initial begin
counter = 0;
buf_clk = 0;
end
assign o_clk = buf_clk;
always @(posedge i_clk) begin
if (counter >= CLK_RATE_HZ/2 - 1) begin
counter <= 0;
buf_clk <= ~buf_clk;
end
else
counter <= counter + 1;
end
endmodule endmodule
// Local Variables: // Local Variables:

View File

@@ -8,17 +8,18 @@ module top(i_clk, o_led, o_led_row_0, i_request, o_busy);
input wire i_request; input wire i_request;
output wire o_busy; output wire o_busy;
wire clk_1Hz; wire clk_12MHz;
clk_gen clk_gen_0 (/*autoinst*/ clk_gen clk_gen_0 (/*autoinst*/
// Outputs // Outputs
.o_clk (clk_1Hz), .o_clk (clk_12MHz),
// Inputs // Inputs
.i_clk (i_clk)); .i_clk (i_clk));
reg [WIDTH-1:0] counter; reg [WIDTH-1:0] counter;
reg [3:0] state; reg [3:0] state;
reg [5:0] led_buf; // output buffer, take into account the icefun use active low LED reg [5:0] led_buf; // output buffer, take into account the icefun use active low LED
reg strobe;
reg busy_buf; reg busy_buf;
wire req_buf; wire req_buf;
@@ -29,90 +30,95 @@ module top(i_clk, o_led, o_led_row_0, i_request, o_busy);
initial begin initial begin
led_buf = 6'h0; led_buf = 6'h0;
counter = 0; {strobe, counter} = 0;
// counter = 0;
state = 0; state = 0;
busy_buf = 0; busy_buf = 0;
end end
always @(posedge clk_1Hz) begin always @(posedge clk_12MHz) begin
if (!busy_buf && req_buf) if (!busy_buf && req_buf)
busy_buf <= 1; busy_buf <= 1;
else else
busy_buf <= (state != 4'h0); busy_buf <= (state != 4'h0);
end end
// counter and strobe run only during busy signal is High // counter and strobe run only during busy signal is High
always @(posedge clk_1Hz) begin always @(posedge clk_12MHz) begin
if (busy_buf) if (busy_buf)
counter <= counter + 1'b1; // counter <= counter + 1'b1;
{strobe, counter} <= counter + 1'b1;
else else
counter <= 0; {strobe, counter} <= 0;
// counter <= 0;
end end
always @(posedge clk_1Hz) begin // state change once strobe starts
always @(posedge clk_12MHz) begin
if (!busy_buf && req_buf) if (!busy_buf && req_buf)
state <= 4'h1; state <= 4'h1;
else if (state >= 4'hB) else if (state >= 4'hB && strobe)
state <= 4'h0; state <= 4'h0;
else if (state != 0) else if (state != 0 && strobe)
state <= state + 1'b1; state <= state + 1'b1;
end end
// fsm for led_buf // fsm for led_buf
always @(posedge clk_1Hz) begin always @(posedge clk_12MHz) begin
case (state) if (strobe)
4'h1: led_buf <= 6'b00_0001; case (state)
4'h2: led_buf <= 6'b00_0010; 4'h1: led_buf <= 6'b00_0001;
4'h3: led_buf <= 6'b00_0100; 4'h2: led_buf <= 6'b00_0010;
4'h4: led_buf <= 6'b00_1000; 4'h3: led_buf <= 6'b00_0100;
4'h5: led_buf <= 6'b01_0000; 4'h4: led_buf <= 6'b00_1000;
4'h6: led_buf <= 6'b10_0000; 4'h5: led_buf <= 6'b01_0000;
4'h7: led_buf <= 6'b01_0000; 4'h6: led_buf <= 6'b10_0000;
4'h8: led_buf <= 6'b00_1000; 4'h7: led_buf <= 6'b01_0000;
4'h9: led_buf <= 6'b00_0100; 4'h8: led_buf <= 6'b00_1000;
4'ha: led_buf <= 6'b00_0010; 4'h9: led_buf <= 6'b00_0100;
4'hb: led_buf <= 6'b00_0001; 4'ha: led_buf <= 6'b00_0010;
default: led_buf <= 6'b00_0000; 4'hb: led_buf <= 6'b00_0001;
endcase default: led_buf <= 6'b00_0000;
endcase
end end
`ifdef FORMAL `ifdef FORMAL
// state should never go beyond 13 // state should never go beyond 13
always @(*) always @(*)
assert(state <= 4'hd); assert(state <= 4'hd);
// I prefix all of the registers (or wires) I use in formal // I prefix all of the registers (or wires) I use in formal
// verification with f_, to distinguish them from the rest of the // verification with f_, to distinguish them from the rest of the
// project. // project.
reg f_valid_output; reg f_valid_output;
always @(*) always @(*)
begin begin
// Determining if the output is valid or not is a rather // Determining if the output is valid or not is a rather
// complex task--unusual for a typical assertion. Here, we'll // complex task--unusual for a typical assertion. Here, we'll
// use f_valid_output and a series of _blocking_ statements // use f_valid_output and a series of _blocking_ statements
// to determine if the output is one of our valid outputs. // to determine if the output is one of our valid outputs.
f_valid_output = 0; f_valid_output = 0;
case(led_buf) case(led_buf)
8'h01: f_valid_output = 1'b1; 8'h01: f_valid_output = 1'b1;
8'h02: f_valid_output = 1'b1; 8'h02: f_valid_output = 1'b1;
8'h04: f_valid_output = 1'b1; 8'h04: f_valid_output = 1'b1;
8'h08: f_valid_output = 1'b1; 8'h08: f_valid_output = 1'b1;
8'h10: f_valid_output = 1'b1; 8'h10: f_valid_output = 1'b1;
8'h20: f_valid_output = 1'b1; 8'h20: f_valid_output = 1'b1;
8'h40: f_valid_output = 1'b1; 8'h40: f_valid_output = 1'b1;
8'h80: f_valid_output = 1'b1; 8'h80: f_valid_output = 1'b1;
endcase endcase
assert(f_valid_output); assert(f_valid_output);
// SV supports a $onehot function which we could've also used // SV supports a $onehot function which we could've also used
// depending upon your version of Yosys. This function will // depending upon your version of Yosys. This function will
// be true if one, and only one, bit in the argument is true. // be true if one, and only one, bit in the argument is true.
// Hence we might have said // Hence we might have said
// assert($onehot(o_led)); // assert($onehot(o_led));
// and avoided this case statement entirely. // and avoided this case statement entirely.
end end
`endif `endif
endmodule endmodule

View File

@@ -1,12 +1,10 @@
SIM_TARGET = build/top SIM_TARGET = build/top
BIN_TARGET = build/top.bin BIN_TARGET = build/top.bin
PCF = constraints/iceFUN.pcf PCF = iceFUN.pcf
TIMING = constraints/timing.py
YOSYS = yosys YOSYS = yosys
PNR = nextpnr-ice40 PNR = nextpnr-ice40
IPACK = icepack IPACK = icepack
BURN = iceFUNprog BURN = iceFUNprog
SBY = sby
VERILATOR=verilator VERILATOR=verilator
VERILATOR_ROOT ?= $(shell bash -c 'verilator -V|grep VERILATOR_ROOT | head -1 | sed -e "s/^.*=\s*//"') VERILATOR_ROOT ?= $(shell bash -c 'verilator -V|grep VERILATOR_ROOT | head -1 | sed -e "s/^.*=\s*//"')
@@ -14,59 +12,43 @@ VINC := $(VERILATOR_ROOT)/include
RTL_SRC := $(wildcard rtl/*.v) RTL_SRC := $(wildcard rtl/*.v)
SIM_SRC := $(wildcard sim/*.cc) SIM_SRC := $(wildcard sim/*.cc)
FV_SRC := sim/top.sby
BUILD_DIR := ./build BUILD_DIR := ./build
define colorecho .PHONY: all burn
@tput setaf 6
@echo $1
@tput sgr0
endef
.PHONY: all burn fv clean sim
all: $(SIM_TARGET) $(BIN_TARGET) all: $(SIM_TARGET) $(BIN_TARGET)
# -GWIDTH=5 allows passing parameter to verilog module
$(BUILD_DIR)/Vtop.cc: $(RTL_SRC) $(BUILD_DIR)/Vtop.cc: $(RTL_SRC)
$(call colorecho, "Running verilator") @echo "Running verilator"
mkdir -p $(BUILD_DIR) @mkdir -p $(BUILD_DIR)
$(VERILATOR) --trace -Wall -cc $^ --top-module top -GWIDTH=10\ @$(VERILATOR) --trace -Wall -GWIDTH=10 -cc $^ --top-module top\
--Mdir $(BUILD_DIR) --timescale-override 10ns/1ns --Mdir $(BUILD_DIR) --timescale-override 10ns/1ns
$(BUILD_DIR)/Vtop__ALL.a: $(BUILD_DIR)/Vtop.cc $(BUILD_DIR)/Vtop__ALL.a: $(BUILD_DIR)/Vtop.cc
make --no-print-directory -C $(BUILD_DIR) -f Vtop.mk @make --no-print-directory -C $(BUILD_DIR) -f Vtop.mk
# std=c++11 flag is needed as of verilator v4.100 # std=c++11 flag is needed as of verilator v4.100
$(SIM_TARGET): $(SIM_SRC) $(BUILD_DIR)/Vtop__ALL.a $(SIM_TARGET): $(SIM_SRC) $(BUILD_DIR)/Vtop__ALL.a
$(call colorecho, "Compiling simulation executable") @echo "Compiling simulation executable"
g++ -I$(VINC) -I$(BUILD_DIR) -std=c++14 $(VINC)/verilated.cpp\ @g++ -I$(VINC) -I$(BUILD_DIR) -std=c++14 $(VINC)/verilated.cpp\
$(VINC)/verilated_vcd_c.cpp $^ -o $@ $(VINC)/verilated_vcd_c.cpp $^ -o $@
echo "Run simulation with ./$(SIM_TARGET)" @echo "Run simulation with ./$(SIM_TARGET)"
$(BUILD_DIR)/top.json: $(RTL_SRC) $(BUILD_DIR)/top.json: $(RTL_SRC)
$(call colorecho, "Synthesizing ...") @echo "Synthesizing ..."
mkdir -p $(BUILD_DIR) @mkdir -p $(BUILD_DIR)
$(YOSYS) -p "synth_ice40 -top top -json build/top.json" -q $^ @$(YOSYS) -p "synth_ice40 -top top -json build/top.json" -q $^
$(BIN_TARGET): $(BUILD_DIR)/top.json $(PCF) $(TIMING) $(BIN_TARGET): $(BUILD_DIR)/top.json $(PCF)
$(call colorecho, "Routing and building binary stream ...") @echo "Routing and building binary stream ..."
$(PNR) -r --hx8k --json $< --package cb132 \ @$(PNR) -r --hx8k --json $< --package cb132 \
--asc $(BUILD_DIR)/top.asc --opt-timing --pcf $(PCF) \ --asc $(BUILD_DIR)/top.asc --opt-timing --pcf $(PCF) -q
--pre-pack $(TIMING) -l $(BUILD_DIR)/pnr_report.txt -q @$(IPACK) $(BUILD_DIR)/top.asc $@
$(IPACK) $(BUILD_DIR)/top.asc $@ @echo "Done!"
$(call colorecho, "Done!")
sim: $(SIM_TARGET)
$(call colorecho, "Running simulation")
$(SIM_TARGET) && open $(BUILD_DIR)/waveform.vcd
burn: $(BIN_TARGET) burn: $(BIN_TARGET)
$(BURN) $< @$(BURN) $<
fv:
$(SBY) -f $(FV_SRC) -d $(BUILD_DIR)/fv
.PHONY: clean
clean: clean:
rm -rf $(BUILD_DIR) rm -rf $(BUILD_DIR)
$V.SILENT:

View File

@@ -1,17 +0,0 @@
# For iceFUN board
set_io --warn-no-port i_clk P7
set_io --warn-no-port i_startN C11
set_io --warn-no-port i_stopN A11
set_io --warn-no-port i_resetN C6
set_io --warn-no-port o_led_row_0 A12
set_io --warn-no-port o_dataN[0] C10
set_io --warn-no-port o_dataN[1] A10
set_io --warn-no-port o_dataN[2] D7
set_io --warn-no-port o_dataN[3] D6
set_io --warn-no-port o_dataN[4] A7
set_io --warn-no-port o_dataN[5] C7
set_io --warn-no-port o_ledN A4
set_io --warn-no-port o_readyN C4

Binary file not shown.

Before

Width:  |  Height:  |  Size: 171 KiB

View File

@@ -1 +0,0 @@
ctx.addClock("i_clk", 100)

5
tdc/iceFUN.pcf Normal file
View File

@@ -0,0 +1,5 @@
# For iceFUN board
set_io --warn-no-port o_led C10
set_io --warn-no-port i_clk P7
set_io --warn-no-port lcol1 A12

View File

@@ -1,17 +1,11 @@
`default_nettype none `default_nettype none
// dummy clock generator, should be replaced by a PLL clock gen eventually // dummy clock generator, should be replaced by a PLL clock gen eventually
module clk_gen #(parameter DIVISION=22)( module clk_gen(
input wire i_clk, input wire i_clk,
output wire o_clk output wire o_clk
); );
reg [DIVISION-1:0] counter = 0; assign o_clk = i_clk;
always @(posedge i_clk) begin
counter <= counter + 1;
end
assign o_clk = counter[DIVISION-1];
endmodule endmodule
// Local Variables: // Local Variables:

View File

@@ -1,81 +0,0 @@
`default_nettype none
module tdc #(parameter COUNTER_WIDTH=16)(
input wire i_clk,
input wire i_start,
input wire i_stop,
input wire i_reset,
output wire o_ready,
output wire [COUNTER_WIDTH-1:0] o_data
);
reg [COUNTER_WIDTH-1:0] counter;
assign o_data = counter;
// states
localparam state_idle = 2'b00;
localparam state_started = 2'b01;
localparam state_running = 2'b10;
localparam state_stopped = 2'b11;
reg [1:0] current_state, next_state;
// ensure that state changes each clock
always @(posedge i_clk) begin
if (i_reset) begin
current_state <= state_idle;
end else begin
current_state <= next_state;
end
end
// state logic
/* verilator lint_off COMBDLY */
always @(*) begin
case (current_state)
state_idle: begin
if (i_start && (~i_stop))
next_state <= state_started;
else
next_state <= state_idle;
end
state_started: begin
if (~i_start && (~i_stop))
next_state <= state_running;
else
next_state <= state_started;
end
state_running: begin
if (~i_start && (i_stop))
next_state <= state_stopped;
else
next_state <= state_running;
end
state_stopped: begin
if (i_reset)
next_state <= state_idle;
else
next_state <= state_stopped;
end
default : next_state <= current_state;
endcase
end
/* verilator lint_on COMBDLY */
// counter runs during running state only
always @(posedge i_clk) begin
case (current_state)
state_idle: counter <= 0;
state_started: counter <= 0;
state_running: counter <= counter + 1;
state_stopped: counter <= counter;
default : counter <= 0;
endcase
end
assign o_ready = (current_state == state_stopped);
endmodule
// Local Variables:
// verilog-library-directories:(".." "./rtl" ".")
// End:

View File

@@ -1,44 +1,26 @@
`default_nettype none `default_nettype none
module top #(parameter WIDTH=24)( module top(i_clk, o_led, lcol1);
input wire i_clk, parameter WIDTH = 24;
input wire i_startN, input wire i_clk;
input wire i_stopN, output wire o_led;
input wire i_resetN, output wire lcol1;
output wire o_ledN,
output wire o_readyN,
output wire [5:0] o_dataN,
output wire o_led_row_0
);
wire clk_3Hz;
reg buf_led = 0;
wire buf_ready;
wire [5:0] buf_data;
assign o_readyN = ~buf_ready;
assign o_dataN = ~buf_data;
clk_gen #(.DIVISION(22)) clk_gen0 (/*autoinst*/ wire clk_12MHz;
// Outputs
.o_clk (clk_3Hz),
// Inputs
.i_clk (i_clk));
tdc #(.COUNTER_WIDTH(6)) tdc0 (/*autoinst*/ clk_gen clk_gen_0 (/*autoinst*/
// Outputs // Outputs
.o_ready (buf_ready), .o_clk (clk_12MHz),
.o_data (buf_data), // Inputs
// Inputs .i_clk (i_clk));
.i_clk (clk_3Hz),
.i_start (~i_startN),
.i_stop (~i_stopN),
.i_reset (~i_resetN));
always @(posedge clk_3Hz) begin reg [WIDTH-1:0] counter;
buf_led <= ~buf_led;
end
assign o_ledN = ~buf_led; always @(posedge clk_12MHz)
assign o_led_row_0 = 1'b0; counter <= counter + 1'b1;
assign o_led = counter[WIDTH-1];
assign lcol1 = 1'b0;
endmodule endmodule
// Local Variables: // Local Variables:

View File

@@ -5,65 +5,43 @@
#include "Vtop.h" #include "Vtop.h"
void tick(int tickcount, Vtop *tb, VerilatedVcdC* tfp) { void tick(int tickcount, Vtop *tb, VerilatedVcdC* tfp) {
tb->eval(); tb->eval();
if (tfp) if (tfp)
tfp->dump(tickcount * 10 - 2); tfp->dump(tickcount * 10 - 2);
tb->i_clk = 1; tb->i_clk = 1;
tb->eval(); tb->eval();
if (tfp) if (tfp)
tfp->dump(tickcount * 10); tfp->dump(tickcount * 10);
tb->i_clk = 0; tb->i_clk = 0;
tb->eval(); tb->eval();
if (tfp) { if (tfp) {
tfp->dump(tickcount * 10 + 5); tfp->dump(tickcount * 10 + 5);
tfp->flush(); tfp->flush();
} }
} }
int main(int argc, char **argv) { int main(int argc, char **argv) {
// Call commandArgs first! // Call commandArgs first!
Verilated::commandArgs(argc, argv); Verilated::commandArgs(argc, argv);
// Instantiate our design // Instantiate our design
Vtop *tb = new Vtop; Vtop *tb = new Vtop;
Verilated::traceEverOn(true); Verilated::traceEverOn(true);
VerilatedVcdC* tfp = new VerilatedVcdC; VerilatedVcdC* tfp = new VerilatedVcdC;
tb->trace(tfp, 00); tb->trace(tfp, 00);
tfp->open("build/waveform.vcd"); tfp->open("build/waveform.vcd");
tb->i_resetN = 1; unsigned tickcount = 0;
tb->i_startN = 1; int last_led = tb->o_led;
tb->i_stopN = 1;
unsigned tickcount = 0;
for (int k = 0; k < 2; k++)
tick(++tickcount, tb, tfp);
tb->i_resetN = 0; for(int k=0; k<(1 << 12); k++) {
tick(++tickcount, tb, tfp); tick(++tickcount, tb, tfp);
tb->i_resetN = 1;
for (int k = 0; k < 3; k++) if (last_led != tb->o_led) {
tick(++tickcount, tb, tfp); printf("k = %7d, led = %d\n", k, tb->o_led);
}
tb->i_startN = 0; last_led = tb->o_led;
tick(++tickcount, tb, tfp); }
tb->i_startN = 1;
for (int k = 0; k < 15; k++)
tick(++tickcount, tb, tfp);
tb->i_stopN = 0;
tick(++tickcount, tb, tfp);
tb->i_stopN = 1;
for (int k = 0; k < 3; k++)
tick(++tickcount, tb, tfp);
tb->i_resetN = 0;
tick(++tickcount, tb, tfp);
tb->i_resetN = 1;
for (int k = 0; k < 3; k++)
tick(++tickcount, tb, tfp);
} }

View File

@@ -1,68 +0,0 @@
SIM_TARGET = build/top
BIN_TARGET = build/top.bin
PCF = constraints/iceFUN.pcf
TIMING = constraints/timing.py
YOSYS = yosys
PNR = nextpnr-ice40
IPACK = icepack
BURN = iceFUNprog
SBY = sby
VERILATOR=verilator
VERILATOR_ROOT ?= $(shell bash -c 'verilator -V|grep VERILATOR_ROOT | head -1 | sed -e "s/^.*=\s*//"')
VINC := $(VERILATOR_ROOT)/include
RTL_SRC := $(wildcard rtl/*.v)
SIM_SRC := $(wildcard sim/*.cc)
FV_SRC := sim/top.sby
BUILD_DIR := ./build
define colorecho
@tput setaf 6
@echo $1
@tput sgr0
endef
.PHONY: all burn fv clean
all: $(SIM_TARGET) $(BIN_TARGET)
$(BUILD_DIR)/Vtop.cc: $(RTL_SRC)
$(call colorecho, "Running verilator")
mkdir -p $(BUILD_DIR)
$(VERILATOR) --trace -Wall -cc $^ --top-module top\
--Mdir $(BUILD_DIR) --timescale-override 10ns/1ns
$(BUILD_DIR)/Vtop__ALL.a: $(BUILD_DIR)/Vtop.cc
make --no-print-directory -C $(BUILD_DIR) -f Vtop.mk
# std=c++11 flag is needed as of verilator v4.100
$(SIM_TARGET): $(SIM_SRC) $(BUILD_DIR)/Vtop__ALL.a
$(call colorecho, "Compiling simulation executable")
g++ -I$(VINC) -I$(BUILD_DIR) -std=c++14 $(VINC)/verilated.cpp\
$(VINC)/verilated_vcd_c.cpp $^ -o $@
echo "Run simulation with ./$(SIM_TARGET)"
$(BUILD_DIR)/top.json: $(RTL_SRC)
$(call colorecho, "Synthesizing ...")
mkdir -p $(BUILD_DIR)
$(YOSYS) -p "synth_ice40 -top top -json build/top.json" -q $^
$(BIN_TARGET): $(BUILD_DIR)/top.json $(PCF) $(TIMING)
$(call colorecho, "Routing and building binary stream ...")
$(PNR) -r --hx8k --json $< --package cb132 \
--asc $(BUILD_DIR)/top.asc --opt-timing --pcf $(PCF) \
--pre-pack $(TIMING) -l $(BUILD_DIR)/pnr_report.txt -q
$(IPACK) $(BUILD_DIR)/top.asc $@
$(call colorecho, "Done!")
burn: $(BIN_TARGET)
$(BURN) $<
fv:
$(SBY) -f $(FV_SRC) -d $(BUILD_DIR)/fv
clean:
rm -rf $(BUILD_DIR)
$V.SILENT:

View File

@@ -1,14 +0,0 @@
# For iceFUN board
set_io --warn-no-port i_clk P7
set_io --warn-no-port i_request A5
set_io --warn-no-port o_led_row_0 A12
set_io --warn-no-port o_led[0] C10
set_io --warn-no-port o_led[1] A10
set_io --warn-no-port o_led[2] D7
set_io --warn-no-port o_led[3] D6
set_io --warn-no-port o_led[4] A7
set_io --warn-no-port o_led[5] C7
# set_io --warn-no-port o_led[6] A4
set_io --warn-no-port o_busy C4

View File

@@ -1 +0,0 @@
ctx.addClock("i_clk", 100)

View File

@@ -1,13 +0,0 @@
`default_nettype none
// dummy clock generator, should be replaced by a PLL clock gen eventually
module clk_gen(
input wire i_clk,
output wire o_clk
);
assign o_clk = i_clk;
endmodule
// Local Variables:
// verilog-library-directories:(".." "./rtl" ".")
// End:

View File

@@ -1,70 +0,0 @@
`default_nettype none
module top(i_clk,
i_cyc, i_stb, i_we, i_addr, i_data,
o_stall, o_ack, o_data,
o_led, o_led_row_0);
input wire i_clk;
//
// Our wishbone bus interface
input wire i_cyc, i_stb, i_we;
input wire i_addr;
input wire [31:0] i_data;
//
output wire o_stall;
output reg o_ack;
output wire [31:0] o_data;
//
// The output LED
output wire o_led_row_0;
output reg [5:0] o_led;
wire busy;
reg [3:0] state;
initial state = 0;
always @(posedge i_clk) begin
if ((i_stb)&&(i_we)&&(!o_stall))
state <= 4'h1;
else if (state >= 4'd11)
state <= 4'h0;
else if (state != 0)
state <= state + 1'b1;
end
always @(posedge i_clk) begin
case(state)
4'h1: o_led <= 6'b00_0001;
4'h2: o_led <= 6'b00_0010;
4'h3: o_led <= 6'b00_0100;
4'h4: o_led <= 6'b00_1000;
4'h5: o_led <= 6'b01_0000;
4'h6: o_led <= 6'b10_0000;
4'h7: o_led <= 6'b01_0000;
4'h8: o_led <= 6'b00_1000;
4'h9: o_led <= 6'b00_0100;
4'ha: o_led <= 6'b00_0010;
4'hb: o_led <= 6'b00_0001;
default: o_led <= 6'b00_0000;
endcase
end
assign busy = (state != 0);
initial o_ack = 1'b0;
always @(posedge i_clk)
o_ack <= (i_stb)&&(!o_stall);
assign o_stall = (busy)&&(i_we);
assign o_data = { 28'h0, state };
assign o_led_row_0 = 0;
// Verilator lint_off UNUSED
wire [33:0] unused;
assign unused = { i_cyc, i_addr, i_data };
// Verilator lint_on UNUSED
//
endmodule
// Local Variables:
// verilog-library-directories:(".." "./rtl" ".")
// End:

View File

@@ -1,118 +0,0 @@
#include <stdio.h>
#include <stdlib.h>
#include "Vtop.h"
#include "verilated.h"
#include "verilated_vcd_c.h"
int tickcount = 0;
Vtop *tb;
VerilatedVcdC *tfp;
void tick(void) {
tickcount++;
tb->eval();
if (tfp)
tfp->dump(tickcount * 10 - 2);
tb->i_clk = 1;
tb->eval();
if (tfp)
tfp->dump(tickcount * 10);
tb->i_clk = 0;
tb->eval();
if (tfp) {
tfp->dump(tickcount * 10 + 5);
tfp->flush();
}
}
unsigned wb_read(unsigned a) {
tb->i_cyc = tb->i_stb = 1;
tb->i_we = 0;
tb->eval();
tb->i_addr= a;
// Make the request
while(tb->o_stall)
tick();
tick();
tb->i_stb = 0;
// Wait for the ACK
while(!tb->o_ack)
tick();
// Idle the bus, and read the response
tb->i_cyc = 0;
return tb->o_data;
}
void wb_write(unsigned a, unsigned v) {
tb->i_cyc = tb->i_stb = 1;
tb->i_we = 1;
tb->eval();
tb->i_addr= a;
tb->i_data= v;
// if busy, keep ticking
while(tb->o_stall)
tick();
// Then, make the bus request
tick();
// and pull stb down
tb->i_stb = 0;
// Wait for the acknowledgement
while(!tb->o_ack)
tick();
// Idle the bus and return
tb->i_cyc = tb->i_stb = 0;
}
int main(int argc, char **argv) {
int last_led, last_state = 0, state = 0;
// Call commandArgs first!
Verilated::commandArgs(argc, argv);
// Instantiate our design
tb = new Vtop;
// Generate a trace
Verilated::traceEverOn(true);
tfp = new VerilatedVcdC;
tb->trace(tfp, 99);
tfp->open("build/waveform.vcd");
last_led = tb->o_led;
// Read from the current state
printf("Initial state is: 0x%02x\n",
wb_read(0));
for(int cycle=0; cycle<2; cycle++) {
// Wait five clocks
for(int i=0; i<5; i++)
tick();
// Start the LEDs cycling
wb_write(0,0);
tick();
while((state = wb_read(0))!=0) {
if ((state != last_state)
||(tb->o_led != last_led)) {
printf("%6d: State #%2d ",
tickcount, state);
for(int j=0; j<6; j++) {
if(tb->o_led & (1<<j))
printf("O");
else
printf("-");
} printf("\n");
} tick();
last_state = state;
last_led = tb->o_led;
}
}
tfp->close();
delete tfp;
delete tb;
}

View File

@@ -1,13 +0,0 @@
[options]
mode prove
[engines]
smtbmc
[script]
read -formal *.v
prep -top top
[files]
rtl/top.v
rtl/clk_gen.v