Merge pull request #30 from espressif/ov3660-support

Ov3660 support
This commit is contained in:
Me No Dev
2019-04-09 14:59:55 +02:00
committed by GitHub
14 changed files with 1905 additions and 40 deletions

View File

@@ -5,6 +5,7 @@ set(COMPONENT_SRCS
driver/twi.c
driver/xclk.c
sensors/ov2640.c
sensors/ov3660.c
sensors/ov7725.c
conversions/yuv.c
conversions/to_jpg.cpp

29
Kconfig
View File

@@ -14,4 +14,33 @@ config OV7725_SUPPORT
Enable this option if you want to use the OV7725.
Disable this option to safe memory.
config OV3660_SUPPORT
bool "OV3660 Support"
default y
help
Enable this option if you want to use the OV3360.
Disable this option to safe memory.
config SCCB_HARDWARE_I2C
bool "Use hardware I2C1 for SCCB"
default y
help
Enable this option if you want to use hardware I2C to control the camera.
Disable this option to use software I2C.
choice CAMERA_TASK_PINNED_TO_CORE
bool "Camera task pinned to core"
default CAMERA_CORE0
help
Pin the camera handle task to a certain core(0/1). It can also be done automatically choosing NO_AFFINITY.
config CAMERA_CORE0
bool "CORE0"
config CAMERA_CORE1
bool "CORE1"
config CAMERA_NO_AFFINITY
bool "NO_AFFINITY"
endchoice
endmenu

View File

@@ -205,7 +205,7 @@ bool fmt2jpg(uint8_t *src, size_t src_len, uint16_t width, uint16_t height, pixf
{
//todo: allocate proper buffer for holding JPEG data
//this should be enough for CIF frame size
int jpg_buf_len = 24*1024;
int jpg_buf_len = 64*1024;
uint8_t * jpg_buf = (uint8_t *)_malloc(jpg_buf_len);

View File

@@ -40,12 +40,16 @@
#if CONFIG_OV7725_SUPPORT
#include "ov7725.h"
#endif
#if CONFIG_OV3660_SUPPORT
#include "ov3660.h"
#endif
typedef enum {
CAMERA_NONE = 0,
CAMERA_UNKNOWN = 1,
CAMERA_OV7725 = 7725,
CAMERA_OV2640 = 2640,
CAMERA_OV3660 = 3660,
} camera_model_t;
#define REG_PID 0x0A
@@ -53,6 +57,9 @@ typedef enum {
#define REG_MIDH 0x1C
#define REG_MIDL 0x1D
#define REG16_CHIDH 0x300A
#define REG16_CHIDL 0x300B
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#define TAG ""
@@ -119,7 +126,7 @@ typedef struct {
camera_state_t* s_state = NULL;
static void i2s_init();
static void i2s_run();
static int i2s_run();
static void IRAM_ATTR vsync_isr(void* arg);
static void IRAM_ATTR i2s_isr(void* arg);
static esp_err_t dma_desc_init();
@@ -171,20 +178,32 @@ static void vsync_intr_enable()
gpio_set_intr_type(s_state->config.pin_vsync, GPIO_INTR_NEGEDGE);
}
static void skip_frame()
static int skip_frame()
{
if (s_state == NULL) {
return;
return -1;
}
int64_t st_t = esp_timer_get_time();
while (_gpio_get_level(s_state->config.pin_vsync) == 0) {
;
if((esp_timer_get_time() - st_t) > 1000000LL){
goto timeout;
}
}
while (_gpio_get_level(s_state->config.pin_vsync) != 0) {
;
if((esp_timer_get_time() - st_t) > 1000000LL){
goto timeout;
}
}
while (_gpio_get_level(s_state->config.pin_vsync) == 0) {
;
if((esp_timer_get_time() - st_t) > 1000000LL){
goto timeout;
}
}
return 0;
timeout:
ESP_LOGE(TAG, "Timeout waiting for VSYNC");
return -1;
}
static void camera_fb_deinit()
@@ -446,7 +465,7 @@ static void IRAM_ATTR i2s_start_bus()
}
}
static void i2s_run()
static int i2s_run()
{
for (int i = 0; i < s_state->dma_desc_count; ++i) {
lldesc_t* d = &s_state->dma_desc[i];
@@ -467,14 +486,19 @@ static void i2s_run()
vTaskDelay(2);
}
// wait for vsync
//todo: wait for vsync
ESP_LOGV(TAG, "Waiting for negative edge on VSYNC");
int64_t st_t = esp_timer_get_time();
while (_gpio_get_level(s_state->config.pin_vsync) != 0) {
;
if((esp_timer_get_time() - st_t) > 1000000LL){
ESP_LOGE(TAG, "Timeout waiting for VSYNC");
return -1;
}
}
ESP_LOGV(TAG, "Got VSYNC");
i2s_start_bus();
return 0;
}
static void IRAM_ATTR i2s_stop_bus()
@@ -818,6 +842,86 @@ static void IRAM_ATTR dma_filter_yuyv_highspeed(const dma_elem_t* src, lldesc_t*
}
}
static void IRAM_ATTR dma_filter_rgb888(const dma_elem_t* src, lldesc_t* dma_desc, uint8_t* dst)
{
size_t end = dma_desc->length / sizeof(dma_elem_t) / 4;
uint8_t lb, hb;
for (size_t i = 0; i < end; ++i) {
hb = src[0].sample1;
lb = src[0].sample2;
dst[0] = (lb & 0x1F) << 3;
dst[1] = (hb & 0x07) << 5 | (lb & 0xE0) >> 3;
dst[2] = hb & 0xF8;
hb = src[1].sample1;
lb = src[1].sample2;
dst[3] = (lb & 0x1F) << 3;
dst[4] = (hb & 0x07) << 5 | (lb & 0xE0) >> 3;
dst[5] = hb & 0xF8;
hb = src[2].sample1;
lb = src[2].sample2;
dst[6] = (lb & 0x1F) << 3;
dst[7] = (hb & 0x07) << 5 | (lb & 0xE0) >> 3;
dst[8] = hb & 0xF8;
hb = src[3].sample1;
lb = src[3].sample2;
dst[9] = (lb & 0x1F) << 3;
dst[10] = (hb & 0x07) << 5 | (lb & 0xE0) >> 3;
dst[11] = hb & 0xF8;
src += 4;
dst += 12;
}
}
static void IRAM_ATTR dma_filter_rgb888_highspeed(const dma_elem_t* src, lldesc_t* dma_desc, uint8_t* dst)
{
size_t end = dma_desc->length / sizeof(dma_elem_t) / 8;
uint8_t lb, hb;
for (size_t i = 0; i < end; ++i) {
hb = src[0].sample1;
lb = src[1].sample1;
dst[0] = (lb & 0x1F) << 3;
dst[1] = (hb & 0x07) << 5 | (lb & 0xE0) >> 3;
dst[2] = hb & 0xF8;
hb = src[2].sample1;
lb = src[3].sample1;
dst[3] = (lb & 0x1F) << 3;
dst[4] = (hb & 0x07) << 5 | (lb & 0xE0) >> 3;
dst[5] = hb & 0xF8;
hb = src[4].sample1;
lb = src[5].sample1;
dst[6] = (lb & 0x1F) << 3;
dst[7] = (hb & 0x07) << 5 | (lb & 0xE0) >> 3;
dst[8] = hb & 0xF8;
hb = src[6].sample1;
lb = src[7].sample1;
dst[9] = (lb & 0x1F) << 3;
dst[10] = (hb & 0x07) << 5 | (lb & 0xE0) >> 3;
dst[11] = hb & 0xF8;
src += 8;
dst += 12;
}
if ((dma_desc->length & 0x7) != 0) {
hb = src[0].sample1;
lb = src[1].sample1;
dst[0] = (lb & 0x1F) << 3;
dst[1] = (hb & 0x07) << 5 | (lb & 0xE0) >> 3;
dst[2] = hb & 0xF8;
hb = src[2].sample1;
lb = src[2].sample2;
dst[3] = (lb & 0x1F) << 3;
dst[4] = (hb & 0x07) << 5 | (lb & 0xE0) >> 3;
dst[5] = hb & 0xF8;
}
}
/*
* Public Methods
* */
@@ -864,7 +968,7 @@ esp_err_t camera_probe(const camera_config_t* config, camera_model_t* out_camera
vTaskDelay(10 / portTICK_PERIOD_MS);
gpio_set_level(config->pin_reset, 1);
vTaskDelay(10 / portTICK_PERIOD_MS);
#if CONFIG_OV2640_SUPPORT
#if (CONFIG_OV2640_SUPPORT && !CONFIG_OV3660_SUPPORT)
} else {
//reset OV2640
SCCB_Write(0x30, 0xFF, 0x01);//bank sensor
@@ -888,13 +992,25 @@ esp_err_t camera_probe(const camera_config_t* config, camera_model_t* out_camera
ESP_LOGD(TAG, "Detected camera at address=0x%02x", s_state->sensor.slv_addr);
sensor_id_t* id = &s_state->sensor.id;
id->PID = SCCB_Read(s_state->sensor.slv_addr, REG_PID);
id->VER = SCCB_Read(s_state->sensor.slv_addr, REG_VER);
id->MIDL = SCCB_Read(s_state->sensor.slv_addr, REG_MIDL);
id->MIDH = SCCB_Read(s_state->sensor.slv_addr, REG_MIDH);
vTaskDelay(10 / portTICK_PERIOD_MS);
ESP_LOGD(TAG, "Camera PID=0x%02x VER=0x%02x MIDL=0x%02x MIDH=0x%02x",
id->PID, id->VER, id->MIDH, id->MIDL);
#if CONFIG_OV3660_SUPPORT
if(s_state->sensor.slv_addr == 0x3c){
id->PID = SCCB_Read16(s_state->sensor.slv_addr, REG16_CHIDH);
id->VER = SCCB_Read16(s_state->sensor.slv_addr, REG16_CHIDL);
vTaskDelay(10 / portTICK_PERIOD_MS);
ESP_LOGD(TAG, "Camera PID=0x%02x VER=0x%02x", id->PID, id->VER);
} else {
#endif
id->PID = SCCB_Read(s_state->sensor.slv_addr, REG_PID);
id->VER = SCCB_Read(s_state->sensor.slv_addr, REG_VER);
id->MIDL = SCCB_Read(s_state->sensor.slv_addr, REG_MIDL);
id->MIDH = SCCB_Read(s_state->sensor.slv_addr, REG_MIDH);
vTaskDelay(10 / portTICK_PERIOD_MS);
ESP_LOGD(TAG, "Camera PID=0x%02x VER=0x%02x MIDL=0x%02x MIDH=0x%02x",
id->PID, id->VER, id->MIDH, id->MIDL);
#if CONFIG_OV3660_SUPPORT
}
#endif
switch (id->PID) {
#if CONFIG_OV2640_SUPPORT
@@ -908,6 +1024,12 @@ esp_err_t camera_probe(const camera_config_t* config, camera_model_t* out_camera
*out_camera_model = CAMERA_OV7725;
ov7725_init(&s_state->sensor);
break;
#endif
#if CONFIG_OV3660_SUPPORT
case OV3660_PID:
*out_camera_model = CAMERA_OV3660;
ov3660_init(&s_state->sensor);
break;
#endif
default:
id->PID = 0;
@@ -940,14 +1062,25 @@ esp_err_t camera_init(const camera_config_t* config)
if (pix_format == PIXFORMAT_GRAYSCALE) {
s_state->fb_size = s_state->width * s_state->height;
if (is_hs_mode()) {
s_state->sampling_mode = SM_0A00_0B00;
s_state->dma_filter = &dma_filter_grayscale_highspeed;
if (s_state->sensor.id.PID == OV3660_PID) {
if (is_hs_mode()) {
s_state->sampling_mode = SM_0A00_0B00;
s_state->dma_filter = &dma_filter_yuyv_highspeed;
} else {
s_state->sampling_mode = SM_0A0B_0C0D;
s_state->dma_filter = &dma_filter_yuyv;
}
s_state->in_bytes_per_pixel = 1; // camera sends Y8
} else {
s_state->sampling_mode = SM_0A0B_0C0D;
s_state->dma_filter = &dma_filter_grayscale;
if (is_hs_mode()) {
s_state->sampling_mode = SM_0A00_0B00;
s_state->dma_filter = &dma_filter_grayscale_highspeed;
} else {
s_state->sampling_mode = SM_0A0B_0C0D;
s_state->dma_filter = &dma_filter_grayscale;
}
s_state->in_bytes_per_pixel = 2; // camera sends YU/YV
}
s_state->in_bytes_per_pixel = 2; // camera sends YUYV
s_state->fb_bytes_per_pixel = 1; // frame buffer stores Y8
} else if (pix_format == PIXFORMAT_YUV422 || pix_format == PIXFORMAT_RGB565) {
s_state->fb_size = s_state->width * s_state->height * 2;
@@ -958,11 +1091,22 @@ esp_err_t camera_init(const camera_config_t* config)
s_state->sampling_mode = SM_0A0B_0C0D;
s_state->dma_filter = &dma_filter_yuyv;
}
s_state->in_bytes_per_pixel = 2; // camera sends YUYV
s_state->fb_bytes_per_pixel = 2; // frame buffer stores Y8
s_state->in_bytes_per_pixel = 2; // camera sends YU/YV
s_state->fb_bytes_per_pixel = 2; // frame buffer stores YU/YV/RGB565
} else if (pix_format == PIXFORMAT_RGB888) {
s_state->fb_size = s_state->width * s_state->height * 3;
if (is_hs_mode()) {
s_state->sampling_mode = SM_0A00_0B00;
s_state->dma_filter = &dma_filter_rgb888_highspeed;
} else {
s_state->sampling_mode = SM_0A0B_0C0D;
s_state->dma_filter = &dma_filter_rgb888;
}
s_state->in_bytes_per_pixel = 2; // camera sends RGB565
s_state->fb_bytes_per_pixel = 3; // frame buffer stores RGB888
} else if (pix_format == PIXFORMAT_JPEG) {
if (s_state->sensor.id.PID != OV2640_PID) {
ESP_LOGE(TAG, "JPEG format is only supported for ov2640");
if (s_state->sensor.id.PID != OV2640_PID && s_state->sensor.id.PID != OV3660_PID) {
ESP_LOGE(TAG, "JPEG format is only supported for ov2640 and ov3660");
err = ESP_ERR_NOT_SUPPORTED;
goto fail;
}
@@ -1032,7 +1176,14 @@ esp_err_t camera_init(const camera_config_t* config)
}
//ToDo: core affinity?
if (!xTaskCreatePinnedToCore(&dma_filter_task, "dma_filter", 4096, NULL, 10, &s_state->dma_filter_task, 1)) {
#if CONFIG_CAMERA_CORE0
if (!xTaskCreatePinnedToCore(&dma_filter_task, "dma_filter", 4096, NULL, 10, &s_state->dma_filter_task, 0))
#elif CONFIG_CAMERA_CORE1
if (!xTaskCreatePinnedToCore(&dma_filter_task, "dma_filter", 4096, NULL, 10, &s_state->dma_filter_task, 1))
#else
if (!xTaskCreate(&dma_filter_task, "dma_filter", 4096, NULL, 10, &s_state->dma_filter_task))
#endif
{
ESP_LOGE(TAG, "Failed to create DMA filter task");
err = ESP_ERR_NO_MEM;
goto fail;
@@ -1063,7 +1214,10 @@ esp_err_t camera_init(const camera_config_t* config)
s_state->sensor.set_lenc(&s_state->sensor, true);
}
skip_frame();
if (skip_frame()) {
err = ESP_ERR_CAMERA_FAILED_TO_SET_OUT_FORMAT;
goto fail;
}
//todo: for some reason the first set of the quality does not work.
if (pix_format == PIXFORMAT_JPEG) {
(*s_state->sensor.set_quality)(&s_state->sensor, config->jpeg_quality);
@@ -1093,6 +1247,8 @@ esp_err_t esp_camera_init(const camera_config_t* config)
}
} else if (camera_model == CAMERA_OV2640) {
ESP_LOGD(TAG, "Detected OV2640 camera");
} else if (camera_model == CAMERA_OV3660) {
ESP_LOGD(TAG, "Detected OV3660 camera");
} else {
ESP_LOGE(TAG, "Camera not supported");
err = ESP_ERR_CAMERA_NOT_SUPPORTED;
@@ -1155,7 +1311,9 @@ camera_fb_t* esp_camera_fb_get()
if(s_state->config.fb_count > 1) {
ESP_LOGD(TAG, "i2s_run");
}
i2s_run();
if (i2s_run() != 0) {
return NULL;
}
}
if(s_state->config.fb_count == 1) {
xSemaphoreTake(s_state->frame_ready, portMAX_DELAY);

View File

@@ -120,7 +120,8 @@ typedef struct {
#define ESP_ERR_CAMERA_BASE 0x20000
#define ESP_ERR_CAMERA_NOT_DETECTED (ESP_ERR_CAMERA_BASE + 1)
#define ESP_ERR_CAMERA_FAILED_TO_SET_FRAME_SIZE (ESP_ERR_CAMERA_BASE + 2)
#define ESP_ERR_CAMERA_NOT_SUPPORTED (ESP_ERR_CAMERA_BASE + 3)
#define ESP_ERR_CAMERA_FAILED_TO_SET_OUT_FORMAT (ESP_ERR_CAMERA_BASE + 3)
#define ESP_ERR_CAMERA_NOT_SUPPORTED (ESP_ERR_CAMERA_BASE + 4)
/**
* @brief Initialize the camera driver

View File

@@ -13,6 +13,7 @@
#define OV9650_PID (0x96)
#define OV2640_PID (0x26)
#define OV7725_PID (0x77)
#define OV3660_PID (0x36)
typedef enum {
PIXFORMAT_RGB565, // 2BPP/RGB565
@@ -20,6 +21,9 @@ typedef enum {
PIXFORMAT_GRAYSCALE, // 1BPP/GRAYSCALE
PIXFORMAT_JPEG, // JPEG/COMPRESSED
PIXFORMAT_RGB888, // 3BPP/RGB888
PIXFORMAT_RAW, // RAW
PIXFORMAT_RGB444, // 3BP2P/RGB444
PIXFORMAT_RGB555, // 3BP2P/RGB555
} pixformat_t;
typedef enum {
@@ -34,6 +38,8 @@ typedef enum {
FRAMESIZE_XGA, // 1024x768
FRAMESIZE_SXGA, // 1280x1024
FRAMESIZE_UXGA, // 1600x1200
FRAMESIZE_QXGA, // 2048*1536
FRAMESIZE_INVALID
} framesize_t;
typedef enum {
@@ -59,6 +65,8 @@ typedef struct {
int8_t brightness;//-2 - 2
int8_t contrast;//-2 - 2
int8_t saturation;//-2 - 2
int8_t sharpness;//-2 - 2
uint8_t denoise;
uint8_t special_effect;//0 - 6
uint8_t wb_mode;//0 - 4
uint8_t awb;
@@ -96,6 +104,8 @@ typedef struct _sensor {
int (*set_contrast) (sensor_t *sensor, int level);
int (*set_brightness) (sensor_t *sensor, int level);
int (*set_saturation) (sensor_t *sensor, int level);
int (*set_sharpness) (sensor_t *sensor, int level);
int (*set_denoise) (sensor_t *sensor, int level);
int (*set_gainceiling) (sensor_t *sensor, gainceiling_t gainceiling);
int (*set_quality) (sensor_t *sensor, int quality);
int (*set_colorbar) (sensor_t *sensor, int enable);

View File

@@ -13,4 +13,6 @@ int SCCB_Init(int pin_sda, int pin_scl);
uint8_t SCCB_Probe();
uint8_t SCCB_Read(uint8_t slv_addr, uint8_t reg);
uint8_t SCCB_Write(uint8_t slv_addr, uint8_t reg, uint8_t data);
uint8_t SCCB_Read16(uint8_t slv_addr, uint16_t reg);
uint8_t SCCB_Write16(uint8_t slv_addr, uint16_t reg, uint8_t data);
#endif // __SCCB_H__

View File

@@ -10,7 +10,6 @@
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include "sccb.h"
#include "twi.h"
#include <stdio.h>
#include "sdkconfig.h"
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
@@ -20,38 +19,107 @@
static const char* TAG = "sccb";
#endif
#define LITTLETOBIG(x) ((x<<8)|(x>>8))
#define SCCB_FREQ (100000) // We don't need fast I2C. 100KHz is fine here.
#define TIMEOUT (1000) /* Can't be sure when I2C routines return. Interrupts
while polling hardware may result in unknown delays. */
#ifdef CONFIG_SCCB_HARDWARE_I2C
#include "driver/i2c.h"
#define SCCB_FREQ 200000 /*!< I2C master frequency*/
#define WRITE_BIT I2C_MASTER_WRITE /*!< I2C master write */
#define READ_BIT I2C_MASTER_READ /*!< I2C master read */
#define ACK_CHECK_EN 0x1 /*!< I2C master will check ack from slave*/
#define ACK_CHECK_DIS 0x0 /*!< I2C master will not check ack from slave */
#define ACK_VAL 0x0 /*!< I2C ack value */
#define NACK_VAL 0x1 /*!< I2C nack value */
const int SCCB_I2C_PORT = 1;
static uint8_t ESP_SLAVE_ADDR = 0x3c;
#else
#include "twi.h"
#endif
int SCCB_Init(int pin_sda, int pin_scl)
{
ESP_LOGI(TAG, "pin_sda %d pin_scl %d\n", pin_sda, pin_scl);
#ifdef CONFIG_SCCB_HARDWARE_I2C
//log_i("SCCB_Init start");
i2c_config_t conf;
conf.mode = I2C_MODE_MASTER;
conf.sda_io_num = pin_sda;
conf.sda_pullup_en = GPIO_PULLUP_ENABLE;
conf.scl_io_num = pin_scl;
conf.scl_pullup_en = GPIO_PULLUP_ENABLE;
conf.master.clk_speed = SCCB_FREQ;
i2c_param_config(SCCB_I2C_PORT, &conf);
i2c_driver_install(SCCB_I2C_PORT, conf.mode, 0, 0, 0);
#else
twi_init(pin_sda, pin_scl);
#endif
return 0;
}
uint8_t SCCB_Probe()
{
#ifdef CONFIG_SCCB_HARDWARE_I2C
uint8_t slave_addr = 0x0;
while(slave_addr < 0x7f) {
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( slave_addr << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(SCCB_I2C_PORT, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if( ret == ESP_OK) {
ESP_SLAVE_ADDR = slave_addr;
return ESP_SLAVE_ADDR;
}
slave_addr++;
}
return ESP_SLAVE_ADDR;
#else
uint8_t reg = 0x00;
uint8_t slv_addr = 0x00;
for (uint8_t i=0; i<127; i++) {
ESP_LOGI(TAG, "SCCB_Probe start");
for (uint8_t i = 0; i < 127; i++) {
if (twi_writeTo(i, &reg, 1, true) == 0) {
slv_addr = i;
break;
}
if (i!=126) {
vTaskDelay(1 / portTICK_PERIOD_MS); // Necessary for OV7725 camera (not for OV2640).
vTaskDelay(10 / portTICK_PERIOD_MS); // Necessary for OV7725 camera (not for OV2640).
}
}
return slv_addr;
#endif
}
uint8_t SCCB_Read(uint8_t slv_addr, uint8_t reg)
{
#ifdef CONFIG_SCCB_HARDWARE_I2C
uint8_t data=0;
esp_err_t ret = ESP_FAIL;
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( ESP_SLAVE_ADDR << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg, ACK_CHECK_EN);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(SCCB_I2C_PORT, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if(ret != ESP_OK) return -1;
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( ESP_SLAVE_ADDR << 1 ) | READ_BIT, ACK_CHECK_EN);
i2c_master_read_byte(cmd, &data, NACK_VAL);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(SCCB_I2C_PORT, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if(ret != ESP_OK) {
ESP_LOGE(TAG, "SCCB_Read Failed addr:0x%02x, reg:0x%02x, data:0x%02x, ret:%d", ESP_SLAVE_ADDR, reg, data, ret);
}
return data;
#else
uint8_t data=0;
int rc = twi_writeTo(slv_addr, &reg, 1, true);
@@ -67,10 +135,26 @@ uint8_t SCCB_Read(uint8_t slv_addr, uint8_t reg)
ESP_LOGE(TAG, "SCCB_Read [%02x] failed rc=%d\n", reg, rc);
}
return data;
#endif
}
uint8_t SCCB_Write(uint8_t slv_addr, uint8_t reg, uint8_t data)
{
#ifdef CONFIG_SCCB_HARDWARE_I2C
esp_err_t ret = ESP_FAIL;
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( ESP_SLAVE_ADDR << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg, ACK_CHECK_EN);
i2c_master_write_byte(cmd, data, ACK_CHECK_EN);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(SCCB_I2C_PORT, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if(ret != ESP_OK) {
ESP_LOGE(TAG, "SCCB_Write Failed addr:0x%02x, reg:0x%02x, data:0x%02x, ret:%d", ESP_SLAVE_ADDR, reg, data, ret);
}
return ret == ESP_OK ? 0 : -1;
#else
uint8_t ret=0;
uint8_t buf[] = {reg, data};
@@ -78,7 +162,93 @@ uint8_t SCCB_Write(uint8_t slv_addr, uint8_t reg, uint8_t data)
ret=0xFF;
}
if (ret != 0) {
printf("SCCB_Write [%02x]=%02x failed\n", reg, data);
ESP_LOGE(TAG, "SCCB_Write [%02x]=%02x failed\n", reg, data);
}
return ret;
#endif
}
uint8_t SCCB_Read16(uint8_t slv_addr, uint16_t reg)
{
#ifdef CONFIG_SCCB_HARDWARE_I2C
uint8_t data=0;
esp_err_t ret = ESP_FAIL;
uint16_t reg_htons = LITTLETOBIG(reg);
uint8_t *reg_u8 = (uint8_t *)&reg_htons;
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( ESP_SLAVE_ADDR << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg_u8[0], ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg_u8[1], ACK_CHECK_EN);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(SCCB_I2C_PORT, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if(ret != ESP_OK) return -1;
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( ESP_SLAVE_ADDR << 1 ) | READ_BIT, ACK_CHECK_EN);
i2c_master_read_byte(cmd, &data, NACK_VAL);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(SCCB_I2C_PORT, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if(ret != ESP_OK) {
ESP_LOGE(TAG, "W [%04x]=%02x fail\n", reg, data);
}
return data;
#else
uint8_t data=0;
uint16_t reg_htons = LITTLETOBIG(reg);
uint8_t *reg_u8 = (uint8_t *)&reg_htons;
uint8_t buf[] = {reg_u8[0], reg_u8[1]};
int rc = twi_writeTo(slv_addr, buf, 2, true);
if (rc != 0) {
data = 0xff;
} else {
rc = twi_readFrom(slv_addr, &data, 1, true);
if (rc != 0) {
data=0xFF;
}
}
if (rc != 0) {
ESP_LOGE(TAG, "R [%04x] fail rc=%d\n", reg, rc);
}
return data;
#endif
}
uint8_t SCCB_Write16(uint8_t slv_addr, uint16_t reg, uint8_t data)
{
static uint16_t i = 0;
#ifdef CONFIG_SCCB_HARDWARE_I2C
esp_err_t ret = ESP_FAIL;
uint16_t reg_htons = LITTLETOBIG(reg);
uint8_t *reg_u8 = (uint8_t *)&reg_htons;
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, ( ESP_SLAVE_ADDR << 1 ) | WRITE_BIT, ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg_u8[0], ACK_CHECK_EN);
i2c_master_write_byte(cmd, reg_u8[1], ACK_CHECK_EN);
i2c_master_write_byte(cmd, data, ACK_CHECK_EN);
i2c_master_stop(cmd);
ret = i2c_master_cmd_begin(SCCB_I2C_PORT, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if(ret != ESP_OK) {
ESP_LOGE(TAG, "W [%04x]=%02x %d fail\n", reg, data, i++);
}
return ret == ESP_OK ? 0 : -1;
#else
uint8_t ret=0;
uint16_t reg_htons = LITTLETOBIG(reg);
uint8_t *reg_u8 = (uint8_t *)&reg_htons;
uint8_t buf[] = {reg_u8[0], reg_u8[1], data};
if(twi_writeTo(slv_addr, buf, 3, true) != 0) {
ret = 0xFF;
}
if (ret != 0) {
ESP_LOGE(TAG, "W [%04x]=%02x %d fail\n", reg, data, i++);
}
return ret;
#endif
}

View File

@@ -11,6 +11,7 @@ const int resolution[][2] = {
{ 1024, 768 }, /* XGA */
{ 1280, 1024 }, /* SXGA */
{ 1600, 1200 }, /* UXGA */
{ 2048, 1536 }, /* QXGA */
};

View File

@@ -471,6 +471,17 @@ static int set_wpc_dsp(sensor_t *sensor, int enable)
return set_reg_bits(sensor, BANK_DSP, CTRL3, 6, 1, enable?1:0);
}
//unsupported
static int set_sharpness(sensor_t *sensor, int level)
{
return -1;
}
static int set_denoise(sensor_t *sensor, int level)
{
return -1;
}
static int init_status(sensor_t *sensor){
sensor->status.brightness = 0;
sensor->status.contrast = 0;
@@ -507,6 +518,9 @@ static int init_status(sensor_t *sensor){
sensor->status.vflip = get_reg_bits(sensor, BANK_SENSOR, REG04, 6, 1);
sensor->status.dcw = get_reg_bits(sensor, BANK_DSP, CTRL2, 5, 1);
sensor->status.colorbar = get_reg_bits(sensor, BANK_SENSOR, COM7, 1, 1);
sensor->status.sharpness = 0;//not supported
sensor->status.denoise = 0;
return 0;
}
@@ -545,6 +559,9 @@ int ov2640_init(sensor_t *sensor)
sensor->set_raw_gma = set_raw_gma_dsp;
sensor->set_lenc = set_lenc_dsp;
//not supported
sensor->set_sharpness = set_sharpness;
sensor->set_denoise = set_denoise;
ESP_LOGD(TAG, "OV2640 Attached");
return 0;
}

945
sensors/ov3660.c Executable file
View File

@@ -0,0 +1,945 @@
/*
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* OV3660 driver.
*
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "sccb.h"
#include "ov3660.h"
#include "ov3660_regs.h"
#include "ov3660_settings.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#else
#include "esp_log.h"
static const char *TAG = "ov3660";
#endif
//#define REG_DEBUG_ON
static int read_reg(uint8_t slv_addr, const uint16_t reg){
int ret = SCCB_Read16(slv_addr, reg);
#ifdef REG_DEBUG_ON
if (ret < 0) {
ESP_LOGE(TAG, "READ REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int check_reg_mask(uint8_t slv_addr, uint16_t reg, uint8_t mask){
return (read_reg(slv_addr, reg) & mask) == mask;
}
static int read_reg16(uint8_t slv_addr, const uint16_t reg){
int ret = 0, ret2 = 0;
ret = read_reg(slv_addr, reg);
if (ret >= 0) {
ret = (ret & 0xFF) << 8;
ret2 = read_reg(slv_addr, reg+1);
if (ret2 < 0) {
ret = ret2;
} else {
ret |= ret2 & 0xFF;
}
}
return ret;
}
static int write_reg(uint8_t slv_addr, const uint16_t reg, uint8_t value){
int ret = 0;
#ifndef REG_DEBUG_ON
ret = SCCB_Write16(slv_addr, reg, value);
#else
int old_value = read_reg(slv_addr, reg);
if (old_value < 0) {
return old_value;
}
if ((uint8_t)old_value != value) {
ESP_LOGI(TAG, "NEW REG 0x%04x: 0x%02x to 0x%02x", reg, (uint8_t)old_value, value);
ret = SCCB_Write16(slv_addr, reg, value);
} else {
ESP_LOGD(TAG, "OLD REG 0x%04x: 0x%02x", reg, (uint8_t)old_value);
ret = SCCB_Write16(slv_addr, reg, value);//maybe not?
}
if (ret < 0) {
ESP_LOGE(TAG, "WRITE REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int set_reg_bits(uint8_t slv_addr, uint16_t reg, uint8_t offset, uint8_t mask, uint8_t value)
{
int ret = 0;
uint8_t c_value, new_value;
ret = read_reg(slv_addr, reg);
if(ret < 0) {
return ret;
}
c_value = ret;
new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset);
ret = write_reg(slv_addr, reg, new_value);
return ret;
}
static int write_regs(uint8_t slv_addr, const uint16_t (*regs)[2])
{
int i = 0, ret = 0;
while (!ret && regs[i][0] != REGLIST_TAIL) {
if (regs[i][0] == REG_DLY) {
vTaskDelay(regs[i][1] / portTICK_PERIOD_MS);
} else {
ret = write_reg(slv_addr, regs[i][0], regs[i][1]);
}
i++;
}
return ret;
}
static int write_reg16(uint8_t slv_addr, const uint16_t reg, uint16_t value)
{
if (write_reg(slv_addr, reg, value >> 8) || write_reg(slv_addr, reg + 1, value)) {
return -1;
}
return 0;
}
static int write_addr_reg(uint8_t slv_addr, const uint16_t reg, uint16_t x_value, uint16_t y_value)
{
if (write_reg16(slv_addr, reg, x_value) || write_reg16(slv_addr, reg + 2, y_value)) {
return -1;
}
return 0;
}
#define write_reg_bits(slv_addr, reg, mask, enable) set_reg_bits(slv_addr, reg, 0, mask, enable?mask:0)
int calc_sysclk(int xclk, bool pll_bypass, int pll_multiplier, int pll_sys_div, int pll_pre_div, bool pll_root_2x, int pll_seld5, bool pclk_manual, int pclk_div)
{
const int pll_pre_div2x_map[] = { 2, 3, 4, 6 };//values are multiplied by two to avoid floats
const int pll_seld52x_map[] = { 2, 2, 4, 5 };
if(!pll_sys_div) {
pll_sys_div = 1;
}
int pll_pre_div2x = pll_pre_div2x_map[pll_pre_div];
int pll_root_div = pll_root_2x?2:1;
int pll_seld52x = pll_seld52x_map[pll_seld5];
int VCO = (xclk / 1000) * pll_multiplier * pll_root_div * 2 / pll_pre_div2x;
int PLLCLK = pll_bypass?(xclk):(VCO * 1000 * 2 / pll_sys_div / pll_seld52x);
int PCLK = PLLCLK / 2 / ((pclk_manual && pclk_div)?pclk_div:1);
int SYSCLK = PLLCLK / 4;
ESP_LOGD(TAG, "Calculated VCO: %d Hz, PLLCLK: %d Hz, SYSCLK: %d Hz, PCLK: %d Hz", VCO*1000, PLLCLK, SYSCLK, PCLK);
return SYSCLK;
}
static int set_pll(sensor_t *sensor, bool bypass, uint8_t multiplier, uint8_t sys_div, uint8_t pre_div, bool root_2x, uint8_t seld5, bool pclk_manual, uint8_t pclk_div){
int ret = 0;
if(multiplier > 31 || sys_div > 15 || pre_div > 3 || pclk_div > 31 || seld5 > 3){
ESP_LOGE(TAG, "Invalid arguments");
return -1;
}
calc_sysclk(sensor->xclk_freq_hz, bypass, multiplier, sys_div, pre_div, root_2x, seld5, pclk_manual, pclk_div);
ret = write_reg(sensor->slv_addr, SC_PLLS_CTRL0, bypass?0x80:0x00);
if (ret == 0) {
ret = write_reg(sensor->slv_addr, SC_PLLS_CTRL1, multiplier & 0x1f);
}
if (ret == 0) {
ret = write_reg(sensor->slv_addr, SC_PLLS_CTRL2, 0x10 | (sys_div & 0x0f));
}
if (ret == 0) {
ret = write_reg(sensor->slv_addr, SC_PLLS_CTRL3, (pre_div & 0x3) << 4 | seld5 | (root_2x?0x40:0x00));
}
if (ret == 0) {
ret = write_reg(sensor->slv_addr, PCLK_RATIO, pclk_div & 0x1f);
}
if (ret == 0) {
ret = write_reg(sensor->slv_addr, VFIFO_CTRL0C, pclk_manual?0x22:0x20);
}
if(ret){
ESP_LOGE(TAG, "set_sensor_pll FAILED!");
}
return ret;
}
static int set_ae_level(sensor_t *sensor, int level);
static int reset(sensor_t *sensor)
{
int ret = 0;
// Software Reset: clear all registers and reset them to their default values
ret = write_reg(sensor->slv_addr, SYSTEM_CTROL0, 0x82);
if(ret){
ESP_LOGE(TAG, "Software Reset FAILED!");
return ret;
}
vTaskDelay(100 / portTICK_PERIOD_MS);
ret = write_regs(sensor->slv_addr, sensor_default_regs);
if (ret == 0) {
ESP_LOGD(TAG, "Camera defaults loaded");
ret = set_ae_level(sensor, 0);
vTaskDelay(100 / portTICK_PERIOD_MS);
}
return ret;
}
static int set_pixformat(sensor_t *sensor, pixformat_t pixformat)
{
int ret = 0;
const uint16_t (*regs)[2];
switch (pixformat) {
case PIXFORMAT_YUV422:
regs = sensor_fmt_yuv422;
break;
case PIXFORMAT_GRAYSCALE:
regs = sensor_fmt_grayscale;
break;
case PIXFORMAT_RGB565:
case PIXFORMAT_RGB888:
regs = sensor_fmt_rgb565;
break;
case PIXFORMAT_JPEG:
regs = sensor_fmt_jpeg;
break;
case PIXFORMAT_RAW:
regs = sensor_fmt_raw;
break;
default:
ESP_LOGE(TAG, "Unsupported pixformat: %u", pixformat);
return -1;
}
ret = write_regs(sensor->slv_addr, regs);
if(ret == 0) {
sensor->pixformat = pixformat;
ESP_LOGD(TAG, "Set pixformat to: %u", pixformat);
}
return ret;
}
static int set_image_options(sensor_t *sensor)
{
int ret = 0;
uint8_t reg20 = 0;
uint8_t reg21 = 0;
uint8_t reg4514 = 0;
uint8_t reg4514_test = 0;
// compression
if (sensor->pixformat == PIXFORMAT_JPEG) {
reg21 |= 0x20;
}
// binning
if (sensor->status.framesize > FRAMESIZE_SVGA) {
reg20 |= 0x40;
} else {
reg20 |= 0x01;
reg21 |= 0x01;
reg4514_test |= 4;
}
// V-Flip
if (sensor->status.vflip) {
reg20 |= 0x06;
reg4514_test |= 1;
}
// H-Mirror
if (sensor->status.hmirror) {
reg21 |= 0x06;
reg4514_test |= 2;
}
switch (reg4514_test) {
//no binning
case 0: reg4514 = 0x88; break;//normal
case 1: reg4514 = 0x88; break;//v-flip
case 2: reg4514 = 0xbb; break;//h-mirror
case 3: reg4514 = 0xbb; break;//v-flip+h-mirror
//binning
case 4: reg4514 = 0xaa; break;//normal
case 5: reg4514 = 0xbb; break;//v-flip
case 6: reg4514 = 0xbb; break;//h-mirror
case 7: reg4514 = 0xaa; break;//v-flip+h-mirror
}
if(write_reg(sensor->slv_addr, TIMING_TC_REG20, reg20)
|| write_reg(sensor->slv_addr, TIMING_TC_REG21, reg21)
|| write_reg(sensor->slv_addr, 0x4514, reg4514)){
ESP_LOGE(TAG, "Setting Image Options Failed");
ret = -1;
}
ESP_LOGD(TAG, "Set Image Options: Compression: %u, Binning: %u, V-Flip: %u, H-Mirror: %u, Reg-4514: 0x%02x",
sensor->pixformat == PIXFORMAT_JPEG, sensor->status.framesize <= FRAMESIZE_SVGA, sensor->status.vflip, sensor->status.hmirror, reg4514);
return ret;
}
static int set_framesize(sensor_t *sensor, framesize_t framesize)
{
int ret = 0;
framesize_t old_framesize = sensor->status.framesize;
sensor->status.framesize = framesize;
if(framesize >= FRAMESIZE_INVALID){
ESP_LOGE(TAG, "Invalid framesize: %u", framesize);
return -1;
}
uint16_t w = resolution[framesize][0];
uint16_t h = resolution[framesize][1];
if (framesize > FRAMESIZE_SVGA) {
ret = write_reg(sensor->slv_addr, 0x4520, 0xb0)
|| write_reg(sensor->slv_addr, X_INCREMENT, 0x11)//odd:1, even: 1
|| write_reg(sensor->slv_addr, Y_INCREMENT, 0x11);//odd:1, even: 1
} else {
ret = write_reg(sensor->slv_addr, 0x4520, 0x0b)
|| write_reg(sensor->slv_addr, X_INCREMENT, 0x31)//odd:3, even: 1
|| write_reg(sensor->slv_addr, Y_INCREMENT, 0x31);//odd:3, even: 1
}
if (ret) {
goto fail;
}
ret = write_addr_reg(sensor->slv_addr, X_ADDR_ST_H, 0, 0)
|| write_addr_reg(sensor->slv_addr, X_ADDR_END_H, 2079, 1547)
|| write_addr_reg(sensor->slv_addr, X_OUTPUT_SIZE_H, w, h);
if (ret) {
goto fail;
}
if (framesize > FRAMESIZE_SVGA) {
ret = write_addr_reg(sensor->slv_addr, X_TOTAL_SIZE_H, 2300, 1564)
|| write_addr_reg(sensor->slv_addr, X_OFFSET_H, 16, 6);
} else {
if (framesize == FRAMESIZE_SVGA) {
ret = write_addr_reg(sensor->slv_addr, X_TOTAL_SIZE_H, 2300, 788);
} else {
ret = write_addr_reg(sensor->slv_addr, X_TOTAL_SIZE_H, 2050, 788);
}
if (ret == 0) {
ret = write_addr_reg(sensor->slv_addr, X_OFFSET_H, 8, 2);
}
}
if (ret == 0) {
ret = write_reg_bits(sensor->slv_addr, ISP_CONTROL_01, 0x20, framesize != FRAMESIZE_QXGA);
}
if (ret == 0) {
ret = set_image_options(sensor);
}
if (ret) {
goto fail;
}
if (sensor->pixformat == PIXFORMAT_JPEG) {
if (framesize == FRAMESIZE_QXGA) {
//40MHz SYSCLK and 10MHz PCLK
ret = set_pll(sensor, false, 24, 1, 3, false, 0, true, 8);
} else {
//50MHz SYSCLK and 10MHz PCLK
ret = set_pll(sensor, false, 30, 1, 3, false, 0, true, 10);
}
} else {
if (framesize > FRAMESIZE_CIF) {
//10MHz SYSCLK and 10MHz PCLK (6.19 FPS)
ret = set_pll(sensor, false, 2, 1, 0, false, 0, true, 2);
} else {
//25MHz SYSCLK and 10MHz PCLK (15.45 FPS)
ret = set_pll(sensor, false, 5, 1, 0, false, 0, true, 5);
}
}
if (ret == 0) {
ESP_LOGD(TAG, "Set framesize to: %ux%u", w, h);
}
return ret;
fail:
sensor->status.framesize = old_framesize;
ESP_LOGE(TAG, "Setting framesize to: %ux%u failed", w, h);
return ret;
}
static int set_hmirror(sensor_t *sensor, int enable)
{
int ret = 0;
sensor->status.hmirror = enable;
ret = set_image_options(sensor);
if (ret == 0) {
ESP_LOGD(TAG, "Set h-mirror to: %d", enable);
}
return ret;
}
static int set_vflip(sensor_t *sensor, int enable)
{
int ret = 0;
sensor->status.vflip = enable;
ret = set_image_options(sensor);
if (ret == 0) {
ESP_LOGD(TAG, "Set v-flip to: %d", enable);
}
return ret;
}
static int set_quality(sensor_t *sensor, int qs)
{
int ret = 0;
ret = write_reg(sensor->slv_addr, COMPRESSION_CTRL07, qs & 0x3f);
if (ret == 0) {
sensor->status.quality = qs;
ESP_LOGD(TAG, "Set quality to: %d", qs);
}
return ret;
}
static int set_colorbar(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, PRE_ISP_TEST_SETTING_1, TEST_COLOR_BAR, enable);
if (ret == 0) {
sensor->status.colorbar = enable;
ESP_LOGD(TAG, "Set colorbar to: %d", enable);
}
return ret;
}
static int set_gain_ctrl(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AGC_MANUALEN, !enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set gain_ctrl to: %d", enable);
sensor->status.agc = enable;
}
return ret;
}
static int set_exposure_ctrl(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AEC_MANUALEN, !enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set exposure_ctrl to: %d", enable);
sensor->status.aec = enable;
}
return ret;
}
static int set_whitebal(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, ISP_CONTROL_01, 0x01, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set awb to: %d", enable);
sensor->status.awb = enable;
}
return ret;
}
//Advanced AWB
static int set_dcw_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, 0x5183, 0x80, !enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set dcw to: %d", enable);
sensor->status.dcw = enable;
}
return ret;
}
//night mode enable
static int set_aec2(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, 0x3a00, 0x04, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set aec2 to: %d", enable);
sensor->status.aec2 = enable;
}
return ret;
}
static int set_bpc_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, 0x5000, 0x04, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set bpc to: %d", enable);
sensor->status.bpc = enable;
}
return ret;
}
static int set_wpc_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, 0x5000, 0x02, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set wpc to: %d", enable);
sensor->status.wpc = enable;
}
return ret;
}
//Gamma enable
static int set_raw_gma_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, 0x5000, 0x20, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set raw_gma to: %d", enable);
sensor->status.raw_gma = enable;
}
return ret;
}
static int set_lenc_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, 0x5000, 0x80, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set lenc to: %d", enable);
sensor->status.lenc = enable;
}
return ret;
}
static int get_agc_gain(sensor_t *sensor)
{
int ra = read_reg(sensor->slv_addr, 0x350a);
if (ra < 0) {
return 0;
}
int rb = read_reg(sensor->slv_addr, 0x350b);
if (rb < 0) {
return 0;
}
int res = (rb & 0xF0) >> 4 | (ra & 0x03) << 4;
if (rb & 0x0F) {
res += 1;
}
return res;
}
//real gain
static int set_agc_gain(sensor_t *sensor, int gain)
{
int ret = 0;
if(gain < 0) {
gain = 0;
} else if(gain > 64) {
gain = 64;
}
//gain value is 6.4 bits float
//in order to use the max range, we deduct 1/16
int gainv = gain << 4;
if(gainv){
gainv -= 1;
}
ret = write_reg(sensor->slv_addr, 0x350a, gainv >> 8) || write_reg(sensor->slv_addr, 0x350b, gainv & 0xff);
if (ret == 0) {
ESP_LOGD(TAG, "Set agc_gain to: %d", gain);
sensor->status.agc_gain = gain;
}
return ret;
}
static int get_aec_value(sensor_t *sensor)
{
int ra = read_reg(sensor->slv_addr, 0x3500);
if (ra < 0) {
return 0;
}
int rb = read_reg(sensor->slv_addr, 0x3501);
if (rb < 0) {
return 0;
}
int rc = read_reg(sensor->slv_addr, 0x3502);
if (rc < 0) {
return 0;
}
int res = (ra & 0x0F) << 12 | (rb & 0xFF) << 4 | (rc & 0xF0) >> 4;
return res;
}
static int set_aec_value(sensor_t *sensor, int value)
{
int ret = 0, max_val = 0;
max_val = read_reg16(sensor->slv_addr, 0x380e);
if (max_val < 0) {
ESP_LOGE(TAG, "Could not read max aec_value");
return -1;
}
if (value > max_val) {
value =max_val;
}
ret = write_reg(sensor->slv_addr, 0x3500, (value >> 12) & 0x0F)
|| write_reg(sensor->slv_addr, 0x3501, (value >> 4) & 0xFF)
|| write_reg(sensor->slv_addr, 0x3502, (value << 4) & 0xF0);
if (ret == 0) {
ESP_LOGD(TAG, "Set aec_value to: %d / %d", value, max_val);
sensor->status.aec_value = value;
}
return ret;
}
static int set_ae_level(sensor_t *sensor, int level)
{
int ret = 0;
if (level < -5 || level > 5) {
return -1;
}
//good targets are between 5 and 115
int target_level = ((level + 5) * 10) + 5;
int level_high, level_low;
int fast_high, fast_low;
level_low = target_level * 23 / 25; //0.92 (0.46)
level_high = target_level * 27 / 25; //1.08 (2.08)
fast_low = level_low >> 1;
fast_high = level_high << 1;
if(fast_high>255) {
fast_high = 255;
}
ret = write_reg(sensor->slv_addr, 0x3a0f, level_high)
|| write_reg(sensor->slv_addr, 0x3a10, level_low)
|| write_reg(sensor->slv_addr, 0x3a1b, level_high)
|| write_reg(sensor->slv_addr, 0x3a1e, level_low)
|| write_reg(sensor->slv_addr, 0x3a11, fast_high)
|| write_reg(sensor->slv_addr, 0x3a1f, fast_low);
if (ret == 0) {
ESP_LOGD(TAG, "Set ae_level to: %d", level);
sensor->status.ae_level = level;
}
return ret;
}
static int set_wb_mode(sensor_t *sensor, int mode)
{
int ret = 0;
if (mode < 0 || mode > 4) {
return -1;
}
ret = write_reg(sensor->slv_addr, 0x3406, (mode != 0));
if (ret) {
return ret;
}
switch (mode) {
case 1://Sunny
ret = write_reg16(sensor->slv_addr, 0x3400, 0x5e0) //AWB R GAIN
|| write_reg16(sensor->slv_addr, 0x3402, 0x410) //AWB G GAIN
|| write_reg16(sensor->slv_addr, 0x3404, 0x540);//AWB B GAIN
break;
case 2://Cloudy
ret = write_reg16(sensor->slv_addr, 0x3400, 0x650) //AWB R GAIN
|| write_reg16(sensor->slv_addr, 0x3402, 0x410) //AWB G GAIN
|| write_reg16(sensor->slv_addr, 0x3404, 0x4f0);//AWB B GAIN
break;
case 3://Office
ret = write_reg16(sensor->slv_addr, 0x3400, 0x520) //AWB R GAIN
|| write_reg16(sensor->slv_addr, 0x3402, 0x410) //AWB G GAIN
|| write_reg16(sensor->slv_addr, 0x3404, 0x660);//AWB B GAIN
break;
case 4://HOME
ret = write_reg16(sensor->slv_addr, 0x3400, 0x420) //AWB R GAIN
|| write_reg16(sensor->slv_addr, 0x3402, 0x3f0) //AWB G GAIN
|| write_reg16(sensor->slv_addr, 0x3404, 0x710);//AWB B GAIN
break;
default://AUTO
break;
}
if (ret == 0) {
ESP_LOGD(TAG, "Set wb_mode to: %d", mode);
sensor->status.wb_mode = mode;
}
return ret;
}
static int set_awb_gain_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
int old_mode = sensor->status.wb_mode;
int mode = enable?old_mode:0;
ret = set_wb_mode(sensor, mode);
if (ret == 0) {
sensor->status.wb_mode = old_mode;
ESP_LOGD(TAG, "Set awb_gain to: %d", enable);
sensor->status.awb_gain = enable;
}
return ret;
}
static int set_special_effect(sensor_t *sensor, int effect)
{
int ret=0;
if (effect < 0 || effect > 6) {
return -1;
}
uint8_t * regs = (uint8_t *)sensor_special_effects[effect];
ret = write_reg(sensor->slv_addr, 0x5580, regs[0])
|| write_reg(sensor->slv_addr, 0x5583, regs[1])
|| write_reg(sensor->slv_addr, 0x5584, regs[2])
|| write_reg(sensor->slv_addr, 0x5003, regs[3]);
if (ret == 0) {
ESP_LOGD(TAG, "Set special_effect to: %d", effect);
sensor->status.special_effect = effect;
}
return ret;
}
static int set_brightness(sensor_t *sensor, int level)
{
int ret = 0;
uint8_t value = 0;
bool negative = false;
switch (level) {
case 3:
value = 0x30;
break;
case 2:
value = 0x20;
break;
case 1:
value = 0x10;
break;
case -1:
value = 0x10;
negative = true;
break;
case -2:
value = 0x20;
negative = true;
break;
case -3:
value = 0x30;
negative = true;
break;
default: // 0
break;
}
ret = write_reg(sensor->slv_addr, 0x5587, value);
if (ret == 0) {
ret = write_reg_bits(sensor->slv_addr, 0x5588, 0x08, negative);
}
if (ret == 0) {
ESP_LOGD(TAG, "Set brightness to: %d", level);
sensor->status.brightness = level;
}
return ret;
}
static int set_contrast(sensor_t *sensor, int level)
{
int ret = 0;
if(level > 3 || level < -3) {
return -1;
}
ret = write_reg(sensor->slv_addr, 0x5586, (level + 4) << 3);
if (ret == 0) {
ESP_LOGD(TAG, "Set contrast to: %d", level);
sensor->status.contrast = level;
}
return ret;
}
static int set_saturation(sensor_t *sensor, int level)
{
int ret = 0;
if(level > 4 || level < -4) {
return -1;
}
uint8_t * regs = (uint8_t *)sensor_saturation_levels[level+4];
for(int i=0; i<11; i++) {
ret = write_reg(sensor->slv_addr, 0x5381 + i, regs[i]);
if (ret) {
break;
}
}
if (ret == 0) {
ESP_LOGD(TAG, "Set saturation to: %d", level);
sensor->status.saturation = level;
}
return ret;
}
static int set_sharpness(sensor_t *sensor, int level)
{
int ret = 0;
if(level > 3 || level < -3) {
return -1;
}
uint8_t mt_offset_2 = (level + 3) * 8;
uint8_t mt_offset_1 = mt_offset_2 + 1;
ret = write_reg_bits(sensor->slv_addr, 0x5308, 0x40, false)//0x40 means auto
|| write_reg(sensor->slv_addr, 0x5300, 0x10)
|| write_reg(sensor->slv_addr, 0x5301, 0x10)
|| write_reg(sensor->slv_addr, 0x5302, mt_offset_1)
|| write_reg(sensor->slv_addr, 0x5303, mt_offset_2)
|| write_reg(sensor->slv_addr, 0x5309, 0x10)
|| write_reg(sensor->slv_addr, 0x530a, 0x10)
|| write_reg(sensor->slv_addr, 0x530b, 0x04)
|| write_reg(sensor->slv_addr, 0x530c, 0x06);
if (ret == 0) {
ESP_LOGD(TAG, "Set sharpness to: %d", level);
sensor->status.sharpness = level;
}
return ret;
}
static int set_gainceiling(sensor_t *sensor, gainceiling_t level)
{
int ret = 0, l = (int)level;
ret = write_reg(sensor->slv_addr, 0x3A18, (l >> 8) & 3)
|| write_reg(sensor->slv_addr, 0x3A19, l & 0xFF);
if (ret == 0) {
ESP_LOGD(TAG, "Set gainceiling to: %d", l);
sensor->status.gainceiling = l;
}
return ret;
}
static int get_denoise(sensor_t *sensor)
{
if (!check_reg_mask(sensor->slv_addr, 0x5308, 0x10)) {
return 0;
}
return (read_reg(sensor->slv_addr, 0x5306) / 4) + 1;
}
static int set_denoise(sensor_t *sensor, int level)
{
int ret = 0;
if (level < 0 || level > 8) {
return -1;
}
ret = write_reg_bits(sensor->slv_addr, 0x5308, 0x10, level > 0);
if (ret == 0 && level > 0) {
ret = write_reg(sensor->slv_addr, 0x5306, (level - 1) * 4);
}
if (ret == 0) {
ESP_LOGD(TAG, "Set denoise to: %d", level);
sensor->status.denoise = level;
}
return ret;
}
static int init_status(sensor_t *sensor)
{
sensor->status.brightness = 0;
sensor->status.contrast = 0;
sensor->status.saturation = 0;
sensor->status.sharpness = (read_reg(sensor->slv_addr, 0x5303) / 8) - 3;
sensor->status.denoise = get_denoise(sensor);
sensor->status.ae_level = 0;
sensor->status.gainceiling = read_reg16(sensor->slv_addr, 0x3A18) & 0x3FF;
sensor->status.awb = check_reg_mask(sensor->slv_addr, ISP_CONTROL_01, 0x01);
sensor->status.dcw = !check_reg_mask(sensor->slv_addr, 0x5183, 0x80);
sensor->status.agc = !check_reg_mask(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AGC_MANUALEN);
sensor->status.aec = !check_reg_mask(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AEC_MANUALEN);
sensor->status.hmirror = check_reg_mask(sensor->slv_addr, TIMING_TC_REG21, TIMING_TC_REG21_HMIRROR);
sensor->status.vflip = check_reg_mask(sensor->slv_addr, TIMING_TC_REG20, TIMING_TC_REG20_VFLIP);
sensor->status.colorbar = check_reg_mask(sensor->slv_addr, PRE_ISP_TEST_SETTING_1, TEST_COLOR_BAR);
sensor->status.bpc = check_reg_mask(sensor->slv_addr, 0x5000, 0x04);
sensor->status.wpc = check_reg_mask(sensor->slv_addr, 0x5000, 0x02);
sensor->status.raw_gma = check_reg_mask(sensor->slv_addr, 0x5000, 0x20);
sensor->status.lenc = check_reg_mask(sensor->slv_addr, 0x5000, 0x80);
sensor->status.quality = read_reg(sensor->slv_addr, COMPRESSION_CTRL07) & 0x3f;
sensor->status.special_effect = 0;
sensor->status.wb_mode = 0;
sensor->status.awb_gain = check_reg_mask(sensor->slv_addr, 0x3406, 0x01);
sensor->status.agc_gain = get_agc_gain(sensor);
sensor->status.aec_value = get_aec_value(sensor);
sensor->status.aec2 = check_reg_mask(sensor->slv_addr, 0x3a00, 0x04);
return 0;
}
int ov3660_init(sensor_t *sensor)
{
sensor->reset = reset;
sensor->set_pixformat = set_pixformat;
sensor->set_framesize = set_framesize;
sensor->set_contrast = set_contrast;
sensor->set_brightness = set_brightness;
sensor->set_saturation = set_saturation;
sensor->set_sharpness = set_sharpness;
sensor->set_gainceiling = set_gainceiling;
sensor->set_quality = set_quality;
sensor->set_colorbar = set_colorbar;
sensor->set_gain_ctrl = set_gain_ctrl;
sensor->set_exposure_ctrl = set_exposure_ctrl;
sensor->set_whitebal = set_whitebal;
sensor->set_hmirror = set_hmirror;
sensor->set_vflip = set_vflip;
sensor->init_status = init_status;
sensor->set_aec2 = set_aec2;
sensor->set_aec_value = set_aec_value;
sensor->set_special_effect = set_special_effect;
sensor->set_wb_mode = set_wb_mode;
sensor->set_ae_level = set_ae_level;
sensor->set_dcw = set_dcw_dsp;
sensor->set_bpc = set_bpc_dsp;
sensor->set_wpc = set_wpc_dsp;
sensor->set_awb_gain = set_awb_gain_dsp;
sensor->set_agc_gain = set_agc_gain;
sensor->set_raw_gma = set_raw_gma_dsp;
sensor->set_lenc = set_lenc_dsp;
sensor->set_denoise = set_denoise;
return 0;
}

View File

@@ -0,0 +1,16 @@
/*
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* OV3660 driver.
*
*/
#ifndef __OV3660_H__
#define __OV3660_H__
#include "sensor.h"
int ov3660_init(sensor_t *sensor);
#endif // __OV3660_H__

View File

@@ -0,0 +1,211 @@
/*
* OV3660 register definitions.
*/
#ifndef __OV3660_REG_REGS_H__
#define __OV3660_REG_REGS_H__
/* system control registers */
#define SYSTEM_CTROL0 0x3008 // Bit[7]: Software reset
// Bit[6]: Software power down
// Bit[5]: Reserved
// Bit[4]: SRB clock SYNC enable
// Bit[3]: Isolation suspend select
// Bit[2:0]: Not used
/* output format control registers */
#define FORMAT_CTRL 0x501F // Format select
// Bit[2:0]:
// 000: YUV422
// 001: RGB
// 010: Dither
// 011: RAW after DPC
// 101: RAW after CIP
/* format control registers */
#define FORMAT_CTRL00 0x4300
/* frame control registers */
#define FRAME_CTRL01 0x4201 // Control Passed Frame Number When both ON and OFF number set to 0x00,frame control is in bypass mode
// Bit[7:4]: Not used
// Bit[3:0]: Frame ON number
#define FRAME_CTRL02 0x4202 // Control Masked Frame Number When both ON and OFF number set to 0x00,frame control is in bypass mode
// Bit[7:4]: Not used
// BIT[3:0]: Frame OFF number
/* ISP top control registers */
#define PRE_ISP_TEST_SETTING_1 0x503D // Bit[7]: Test enable
// 0: Test disable
// 1: Color bar enable
// Bit[6]: Rolling
// Bit[5]: Transparent
// Bit[4]: Square black and white
// Bit[3:2]: Color bar style
// 00: Standard 8 color bar
// 01: Gradual change at vertical mode 1
// 10: Gradual change at horizontal
// 11: Gradual change at vertical mode 2
// Bit[1:0]: Test select
// 00: Color bar
// 01: Random data
// 10: Square data
// 11: Black image
//exposure = {0x3500[3:0], 0x3501[7:0], 0x3502[7:0]} / 16 × tROW
/* AEC/AGC control functions */
#define AEC_PK_MANUAL 0x3503 // AEC Manual Mode Control
// Bit[7:6]: Reserved
// Bit[5]: Gain delay option
// Valid when 0x3503[4]=1b0
// 0: Delay one frame latch
// 1: One frame latch
// Bit[4:2]: Reserved
// Bit[1]: AGC manual
// 0: Auto enable
// 1: Manual enable
// Bit[0]: AEC manual
// 0: Auto enable
// 1: Manual enable
//gain = {0x350A[1:0], 0x350B[7:0]} / 16
/* mirror and flip registers */
#define TIMING_TC_REG20 0x3820 // Timing Control Register
// Bit[2:1]: Vertical flip enable
// 00: Normal
// 11: Vertical flip
// Bit[0]: Vertical binning enable
#define TIMING_TC_REG21 0x3821 // Timing Control Register
// Bit[5]: Compression Enable
// Bit[2:1]: Horizontal mirror enable
// 00: Normal
// 11: Horizontal mirror
// Bit[0]: Horizontal binning enable
#define CLOCK_POL_CONTROL 0x4740// Bit[5]: PCLK polarity 0: active low
// 1: active high
// Bit[3]: Gate PCLK under VSYNC
// Bit[2]: Gate PCLK under HREF
// Bit[1]: HREF polarity
// 0: active low
// 1: active high
// Bit[0] VSYNC polarity
// 0: active low
// 1: active high
#define DRIVE_CAPABILITY 0x302c // Bit[7:6]:
// 00: 1x
// 01: 2x
// 10: 3x
// 11: 4x
#define X_ADDR_ST_H 0x3800 //Bit[3:0]: X address start[11:8]
#define X_ADDR_ST_L 0x3801 //Bit[7:0]: X address start[7:0]
#define Y_ADDR_ST_H 0x3802 //Bit[2:0]: Y address start[10:8]
#define Y_ADDR_ST_L 0x3803 //Bit[7:0]: Y address start[7:0]
#define X_ADDR_END_H 0x3804 //Bit[3:0]: X address end[11:8]
#define X_ADDR_END_L 0x3805 //Bit[7:0]:
#define Y_ADDR_END_H 0x3806 //Bit[2:0]: Y address end[10:8]
#define Y_ADDR_END_L 0x3807 //Bit[7:0]:
// Size after scaling
#define X_OUTPUT_SIZE_H 0x3808 //Bit[3:0]: DVP output horizontal width[11:8]
#define X_OUTPUT_SIZE_L 0x3809 //Bit[7:0]:
#define Y_OUTPUT_SIZE_H 0x380a //Bit[2:0]: DVP output vertical height[10:8]
#define Y_OUTPUT_SIZE_L 0x380b //Bit[7:0]:
#define X_TOTAL_SIZE_H 0x380c //Bit[3:0]: Total horizontal size[11:8]
#define X_TOTAL_SIZE_L 0x380d //Bit[7:0]:
#define Y_TOTAL_SIZE_H 0x380e //Bit[7:0]: Total vertical size[15:8]
#define Y_TOTAL_SIZE_L 0x380f //Bit[7:0]:
#define X_OFFSET_H 0x3810 //Bit[3:0]: ISP horizontal offset[11:8]
#define X_OFFSET_L 0x3811 //Bit[7:0]:
#define Y_OFFSET_H 0x3812 //Bit[2:0]: ISP vertical offset[10:8]
#define Y_OFFSET_L 0x3813 //Bit[7:0]:
#define X_INCREMENT 0x3814 //Bit[7:4]: Horizontal odd subsample increment
//Bit[3:0]: Horizontal even subsample increment
#define Y_INCREMENT 0x3815 //Bit[7:4]: Vertical odd subsample increment
//Bit[3:0]: Vertical even subsample increment
// Size before scaling
//#define X_INPUT_SIZE (X_ADDR_END - X_ADDR_ST + 1 - (2 * X_OFFSET))
//#define Y_INPUT_SIZE (Y_ADDR_END - Y_ADDR_ST + 1 - (2 * Y_OFFSET))
#define ISP_CONTROL_01 0x5001 // Bit[5]: Scale enable
// 0: Disable
// 1: Enable
#define SCALE_CTRL_1 0x5601 // Bit[6:4]: HDIV RW
// DCW scale times
// 000: DCW 1 time
// 001: DCW 2 times
// 010: DCW 4 times
// 100: DCW 8 times
// 101: DCW 16 times
// Others: DCW 16 times
// Bit[2:0]: VDIV RW
// DCW scale times
// 000: DCW 1 time
// 001: DCW 2 times
// 010: DCW 4 times
// 100: DCW 8 times
// 101: DCW 16 times
// Others: DCW 16 times
#define SCALE_CTRL_2 0x5602 // X_SCALE High Bits
#define SCALE_CTRL_3 0x5603 // X_SCALE Low Bits
#define SCALE_CTRL_4 0x5604 // Y_SCALE High Bits
#define SCALE_CTRL_5 0x5605 // Y_SCALE Low Bits
#define SCALE_CTRL_6 0x5606 // Bit[3:0]: V Offset
#define PCLK_RATIO 0x3824 // Bit[4:0]: PCLK ratio manual
#define VFIFO_CTRL0C 0x460C // Bit[1]: PCLK manual enable
// 0: Auto
// 1: Manual by PCLK_RATIO
#define VFIFO_X_SIZE_H 0x4602
#define VFIFO_X_SIZE_L 0x4603
#define VFIFO_Y_SIZE_H 0x4604
#define VFIFO_Y_SIZE_L 0x4605
#define SC_PLLS_CTRL0 0x303a // Bit[7]: PLLS bypass
#define SC_PLLS_CTRL1 0x303b // Bit[4:0]: PLLS multiplier
#define SC_PLLS_CTRL2 0x303c // Bit[6:4]: PLLS charge pump control
// Bit[3:0]: PLLS system divider
#define SC_PLLS_CTRL3 0x303d // Bit[5:4]: PLLS pre-divider
// 00: 1
// 01: 1.5
// 10: 2
// 11: 3
// Bit[2]: PLLS root-divider - 1
// Bit[1:0]: PLLS seld5
// 00: 1
// 01: 1
// 10: 2
// 11: 2.5
#define COMPRESSION_CTRL00 0x4400 //
#define COMPRESSION_CTRL01 0x4401 //
#define COMPRESSION_CTRL02 0x4402 //
#define COMPRESSION_CTRL03 0x4403 //
#define COMPRESSION_CTRL04 0x4404 //
#define COMPRESSION_CTRL05 0x4405 //
#define COMPRESSION_CTRL06 0x4406 //
#define COMPRESSION_CTRL07 0x4407 // Bit[5:0]: QS
#define COMPRESSION_ISI_CTRL 0x4408 //
#define COMPRESSION_CTRL09 0x4409 //
#define COMPRESSION_CTRL0a 0x440a //
#define COMPRESSION_CTRL0b 0x440b //
#define COMPRESSION_CTRL0c 0x440c //
#define COMPRESSION_CTRL0d 0x440d //
#define COMPRESSION_CTRL0E 0x440e //
/**
* @brief register value
*/
#define TEST_COLOR_BAR 0xC0 /* Enable Color Bar roling Test */
#define AEC_PK_MANUAL_AGC_MANUALEN 0x02 /* Enable AGC Manual enable */
#define AEC_PK_MANUAL_AEC_MANUALEN 0x01 /* Enable AEC Manual enable */
#define TIMING_TC_REG20_VFLIP 0x06 /* Vertical flip enable */
#define TIMING_TC_REG21_HMIRROR 0x06 /* Horizontal mirror enable */
#endif // __OV3660_REG_REGS_H__

View File

@@ -0,0 +1,304 @@
#ifndef _OV3660_SETTINGS_H_
#define _OV3660_SETTINGS_H_
#include <stdint.h>
#include <stdbool.h>
#include "esp_attr.h"
#include "ov3660_regs.h"
#define REG_DLY 0xffff
#define REGLIST_TAIL 0x0000
const DRAM_ATTR uint16_t sensor_default_regs[][2] = {
{SYSTEM_CTROL0, 0x82}, // software reset
{REG_DLY, 10}, // delay 10ms
{0x3103, 0x13},
{SYSTEM_CTROL0, 0x42},
{0x3017, 0xff},
{0x3018, 0xff},
{DRIVE_CAPABILITY, 0xc3},
{CLOCK_POL_CONTROL, 0x21},
{0x3611, 0x01},
{0x3612, 0x2d},
{0x3032, 0x00},
{0x3614, 0x80},
{0x3618, 0x00},
{0x3619, 0x75},
{0x3622, 0x80},
{0x3623, 0x00},
{0x3624, 0x03},
{0x3630, 0x52},
{0x3632, 0x07},
{0x3633, 0xd2},
{0x3704, 0x80},
{0x3708, 0x66},
{0x3709, 0x12},
{0x370b, 0x12},
{0x3717, 0x00},
{0x371b, 0x60},
{0x371c, 0x00},
{0x3901, 0x13},
{0x3600, 0x08},
{0x3620, 0x43},
{0x3702, 0x20},
{0x3739, 0x48},
{0x3730, 0x20},
{0x370c, 0x0c},
{0x3a18, 0x00},
{0x3a19, 0xf8},
{0x3000, 0x10},
{0x3004, 0xef},
{0x6700, 0x05},
{0x6701, 0x19},
{0x6702, 0xfd},
{0x6703, 0xd1},
{0x6704, 0xff},
{0x6705, 0xff},
{0x3c01, 0x80},
{0x3c00, 0x04},
{0x3a08, 0x00}, {0x3a09, 0x62}, //50Hz Band Width Step (10bit)
{0x3a0e, 0x08}, //50Hz Max Bands in One Frame (6 bit)
{0x3a0a, 0x00}, {0x3a0b, 0x52}, //60Hz Band Width Step (10bit)
{0x3a0d, 0x09}, //60Hz Max Bands in One Frame (6 bit)
{0x3a00, 0x3a},//night mode off
{0x3a14, 0x09},
{0x3a15, 0x30},
{0x3a02, 0x09},
{0x3a03, 0x30},
{COMPRESSION_CTRL0E, 0x08},
{0x4520, 0x0b},
{0x460b, 0x37},
{0x4713, 0x02},
{0x471c, 0xd0},
{0x5086, 0x00},
{0x5002, 0x00},
{0x501f, 0x00},
{SYSTEM_CTROL0, 0x02},
{0x5180, 0xff},
{0x5181, 0xf2},
{0x5182, 0x00},
{0x5183, 0x14},
{0x5184, 0x25},
{0x5185, 0x24},
{0x5186, 0x16},
{0x5187, 0x16},
{0x5188, 0x16},
{0x5189, 0x68},
{0x518a, 0x60},
{0x518b, 0xe0},
{0x518c, 0xb2},
{0x518d, 0x42},
{0x518e, 0x35},
{0x518f, 0x56},
{0x5190, 0x56},
{0x5191, 0xf8},
{0x5192, 0x04},
{0x5193, 0x70},
{0x5194, 0xf0},
{0x5195, 0xf0},
{0x5196, 0x03},
{0x5197, 0x01},
{0x5198, 0x04},
{0x5199, 0x12},
{0x519a, 0x04},
{0x519b, 0x00},
{0x519c, 0x06},
{0x519d, 0x82},
{0x519e, 0x38},
{0x5381, 0x1d},
{0x5382, 0x60},
{0x5383, 0x03},
{0x5384, 0x0c},
{0x5385, 0x78},
{0x5386, 0x84},
{0x5387, 0x7d},
{0x5388, 0x6b},
{0x5389, 0x12},
{0x538a, 0x01},
{0x538b, 0x98},
{0x5481, 0x05},
{0x5482, 0x09},
{0x5483, 0x10},
{0x5484, 0x3a},
{0x5485, 0x4c},
{0x5486, 0x5a},
{0x5487, 0x68},
{0x5488, 0x74},
{0x5489, 0x80},
{0x548a, 0x8e},
{0x548b, 0xa4},
{0x548c, 0xb4},
{0x548d, 0xc8},
{0x548e, 0xde},
{0x548f, 0xf0},
{0x5490, 0x15},
{0x5000, 0xa7},
{0x5800, 0x0C},
{0x5801, 0x09},
{0x5802, 0x0C},
{0x5803, 0x0C},
{0x5804, 0x0D},
{0x5805, 0x17},
{0x5806, 0x06},
{0x5807, 0x05},
{0x5808, 0x04},
{0x5809, 0x06},
{0x580a, 0x09},
{0x580b, 0x0E},
{0x580c, 0x05},
{0x580d, 0x01},
{0x580e, 0x01},
{0x580f, 0x01},
{0x5810, 0x05},
{0x5811, 0x0D},
{0x5812, 0x05},
{0x5813, 0x01},
{0x5814, 0x01},
{0x5815, 0x01},
{0x5816, 0x05},
{0x5817, 0x0D},
{0x5818, 0x08},
{0x5819, 0x06},
{0x581a, 0x05},
{0x581b, 0x07},
{0x581c, 0x0B},
{0x581d, 0x0D},
{0x581e, 0x12},
{0x581f, 0x0D},
{0x5820, 0x0E},
{0x5821, 0x10},
{0x5822, 0x10},
{0x5823, 0x1E},
{0x5824, 0x53},
{0x5825, 0x15},
{0x5826, 0x05},
{0x5827, 0x14},
{0x5828, 0x54},
{0x5829, 0x25},
{0x582a, 0x33},
{0x582b, 0x33},
{0x582c, 0x34},
{0x582d, 0x16},
{0x582e, 0x24},
{0x582f, 0x41},
{0x5830, 0x50},
{0x5831, 0x42},
{0x5832, 0x15},
{0x5833, 0x25},
{0x5834, 0x34},
{0x5835, 0x33},
{0x5836, 0x24},
{0x5837, 0x26},
{0x5838, 0x54},
{0x5839, 0x25},
{0x583a, 0x15},
{0x583b, 0x25},
{0x583c, 0x53},
{0x583d, 0xCF},
{0x3a0f, 0x30},
{0x3a10, 0x28},
{0x3a1b, 0x30},
{0x3a1e, 0x28},
{0x3a11, 0x60},
{0x3a1f, 0x14},
{0x5302, 0x28},
{0x5303, 0x20},
{0x5306, 0x1c}, //de-noise offset 1
{0x5307, 0x28}, //de-noise offset 2
{0x4002, 0xc5},
{0x4003, 0x81},
{0x4005, 0x12},
{0x5688, 0x11},
{0x5689, 0x11},
{0x568a, 0x11},
{0x568b, 0x11},
{0x568c, 0x11},
{0x568d, 0x11},
{0x568e, 0x11},
{0x568f, 0x11},
{0x5580, 0x06},
{0x5588, 0x00},
{0x5583, 0x40},
{0x5584, 0x2c},
{ISP_CONTROL_01, 0x83}, // turn color matrix, awb and SDE
{REGLIST_TAIL, 0x00}, // tail
};
const DRAM_ATTR uint16_t sensor_fmt_jpeg[][2] = {
{FORMAT_CTRL, 0x00}, // YUV422
{FORMAT_CTRL00, 0x30}, // YUYV
{0x3002, 0x00},//0x1c to 0x00 !!!
{0x3006, 0xff},//0xc3 to 0xff !!!
{0x471c, 0x50},//0xd0 to 0x50 !!!
{REGLIST_TAIL, 0x00}, // tail
};
const DRAM_ATTR uint16_t sensor_fmt_raw[][2] = {
{FORMAT_CTRL00, 0x00}, // RAW
{REGLIST_TAIL, 0x00}
};
const DRAM_ATTR uint16_t sensor_fmt_grayscale[][2] = {
{FORMAT_CTRL, 0x00}, // YUV422
{FORMAT_CTRL00, 0x10}, // Y8
{REGLIST_TAIL, 0x00}
};
const DRAM_ATTR uint16_t sensor_fmt_yuv422[][2] = {
{FORMAT_CTRL, 0x00}, // YUV422
{FORMAT_CTRL00, 0x30}, // YUYV
{REGLIST_TAIL, 0x00}
};
const DRAM_ATTR uint16_t sensor_fmt_rgb565[][2] = {
{FORMAT_CTRL, 0x01}, // RGB
{FORMAT_CTRL00, 0x61}, // RGB565 (BGR)
{REGLIST_TAIL, 0x00}
};
const DRAM_ATTR uint8_t sensor_saturation_levels[9][11] = {
{0x1d, 0x60, 0x03, 0x07, 0x48, 0x4f, 0x4b, 0x40, 0x0b, 0x01, 0x98},//-4
{0x1d, 0x60, 0x03, 0x08, 0x54, 0x5c, 0x58, 0x4b, 0x0d, 0x01, 0x98},//-3
{0x1d, 0x60, 0x03, 0x0a, 0x60, 0x6a, 0x64, 0x56, 0x0e, 0x01, 0x98},//-2
{0x1d, 0x60, 0x03, 0x0b, 0x6c, 0x77, 0x70, 0x60, 0x10, 0x01, 0x98},//-1
{0x1d, 0x60, 0x03, 0x0c, 0x78, 0x84, 0x7d, 0x6b, 0x12, 0x01, 0x98},//0
{0x1d, 0x60, 0x03, 0x0d, 0x84, 0x91, 0x8a, 0x76, 0x14, 0x01, 0x98},//+1
{0x1d, 0x60, 0x03, 0x0e, 0x90, 0x9e, 0x96, 0x80, 0x16, 0x01, 0x98},//+2
{0x1d, 0x60, 0x03, 0x10, 0x9c, 0xac, 0xa2, 0x8b, 0x17, 0x01, 0x98},//+3
{0x1d, 0x60, 0x03, 0x11, 0xa8, 0xb9, 0xaf, 0x96, 0x19, 0x01, 0x98},//+4
};
const DRAM_ATTR uint8_t sensor_special_effects[7][4] = {
{0x06, 0x40, 0x2c, 0x08},//Normal
{0x46, 0x40, 0x28, 0x08},//Negative
{0x1e, 0x80, 0x80, 0x08},//Grayscale
{0x1e, 0x80, 0xc0, 0x08},//Red Tint
{0x1e, 0x60, 0x60, 0x08},//Green Tint
{0x1e, 0xa0, 0x40, 0x08},//Blue Tint
{0x1e, 0x40, 0xa0, 0x08},//Sepia
};
#endif