Files
writeup/GroningenSymposiumPoster/current

338 lines
12 KiB
Plaintext
Executable File

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% LaTeX poster template
% Created by Nathaniel Johnston
% August 2009
% http://www.nathanieljohnston.com/2009/08/latex-poster-template/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[final]{beamer}
\usepackage[scale=1.24]{beamerposter}
\usepackage{graphicx} % allows us to import images
%-----------------------------------------------------------
% Define the column width and poster size
% To set effective sepwid, onecolwid and twocolwid values, first choose how
% many columns you want and how much separation you want between columns The
% separation I chose is 0.024 and I want 4 columns
% Then set onecolwid to be (1-(4+1)*0.024)/4 = 0.22
% Set twocolwid to be 2*onecolwid + sepwid = 0.464
%-----------------------------------------------------------
\newlength{\sepwid}
\newlength{\onecolwid}
\newlength{\twocolwid}
\newlength{\threecolwid}
\setlength{\paperwidth}{594mm}
\setlength{\paperheight}{841mm}
\setlength{\sepwid}{0.024\paperheight}
\setlength{\onecolwid}{0.22\paperheight}
\setlength{\twocolwid}{0.464\paperheight}
\setlength{\threecolwid}{0.708\paperheight}
%\setlength{\sepwid}{0.024\paperwidth}
%\setlength{\onecolwid}{0.22\paperwidth}
%\setlength{\twocolwid}{0.464\paperwidth}
%\setlength{\threecolwid}{0.708\paperwidth}
\setlength{\topmargin}{-0.5in}
\usetheme{confposter}
\usepackage{exscale}
%-----------------------------------------------------------
% The next part fixes a problem with figure numbering. Thanks Nishan!
% When including a figure in your poster, be sure that the commands are typed
% in the following order: \begin{figure}
% \includegraphics[...]{...}
% \caption{...}
% \end{figure}
% That is, put the \caption after the \includegraphics
%-----------------------------------------------------------
\usecaptiontemplate{
\small
\structure{\insertcaptionname~\insertcaptionnumber:}
\insertcaption}
%-----------------------------------------------------------
% Define colours (see beamerthemeconfposter.sty to change these colour definitions)
%-----------------------------------------------------------
\setbeamercolor{block title}{fg=ngreen,bg=white}
\setbeamercolor{block body}{fg=black,bg=white}
\setbeamercolor{block alerted title}{fg=white,bg=dblue!70}
\setbeamercolor{block alerted body}{fg=black,bg=dblue!10}
%-----------------------------------------------------------
% Some new commands
%-----------------------------------------------------------
\newcommand{\compresslist}{%
\setlength{\itemsep}{1pt}%
\setlength{\parskip}{0pt}%
\setlength{\parsep}{0pt}%
}
%-----------------------------------------------------------
% Name and authors of poster/paper/research
%-----------------------------------------------------------
%\title{Study of Muon Capture for $\boldsymbol{\mu-e}$ Conversion Experiments}
\title{Measurement of Charged Particles Emission From Muon Capture}
\author{Tran Hoai Nam}
\institute{Department of Physics, Graduate School of Science, Osaka Univerity}
%-----------------------------------------------------------
% Start the poster itself
%-----------------------------------------------------------
\begin{document}
\begin{frame}[t]
\begin{columns}[t] % the [t] option aligns the column's content at the top
%An empty column to help positioning the whole content at the center of the
%paper
\begin{column}
{0.3\sepwid}
\end{column}
%-----------------------------------------------------------
% Actual content
%-----------------------------------------------------------
\begin{column}{\onecolwid}
% Introduction
%\setbeamercolor{block alerted body}{fg=black,bg=white}
\begin{block}{Introduction - Searches for cFLV}
\begin{itemize}
\item Charged lepton flavor violation (cFLV), if observed, is a clear
evidence of new physics beyond the Standard Model (fig.
\ref{fig:SMmeg}).
\begin{figure}[h!]
\begin{center}
\includegraphics[width=0.8\onecolwid]{figs/SM-meg2}
\end{center}
\caption{One of the diagrams of massive neutrino contributions to
$\mu \rightarrow e\gamma$}
\label{fig:SMmeg}
\end{figure}
\item Event signal of $\mu - e$ conversion
\item COMET schedule
\end{itemize}
\end{block}
\vskip2ex
\begin{block}{Introduction$\boldsymbol{\mu^-N \rightarrow e^-N}$}
\vskip1ex
\begin{itemize}
\item Two major experiments search for $\mu-e$ conversion:
COMET@J-PARC and Mu2e@FNAL
\item Design issue from muon capture process: optimization of the
target thickness and the absorber to reduce hit rate of protons
\begin{figure}[]
\includegraphics[width=22cm]{figs/phase1det}
\caption{Concept of the tracking detector of COMET Phase I [ref]}
\label{fig:phase1det}
\end{figure}
\item Current status: no data available for relevant target and
energy range. Mu2e and COMET are using a parameterization of muon
capture data taken from the Si active target in 1968.
\begin{figure}[]
\includegraphics[width=22cm]{figs/si-proton}
\caption{Silicon data [ref]}
\label{fig:sidata}
\end{figure}
\end{itemize}
\end{block}
\vskip2ex
\begin{block}{The new measurement of charged particles emission
from muon capture}
\begin{itemize}
\item A joint collaboration between COMET and Mu2e
\item Goals of the experiment:
\begin{itemize}
\item[-] measure rate and energy spectra of the charged particles
(p, d, $\alpha$) emitted after muon capture on some targets:
Al, Si and Si (active target),
\item[-] required precision: 5\% for both the rate and the energy
spectra in the range from 2.5 $-$ 12 MeV
\end{itemize}
\item Will be conducted at TRIUMF (Canada) and PSI (Switzerland).
\end{itemize}
\vskip1ex
\end{block}
\end{column}
%\begin{column}{0.3\sepwid}
%\end{column} % empty spacer column
% create a three-column-wide column and then we will split it up later
\begin{column}{\twocolwid}
% Methods
\begin{block}{Methods}
\begin{minipage}[t]{\onecolwid}
\begin{figure}[]
\includegraphics[width=0.95\onecolwid]{figs/setup}
\caption{Schematic view of the experimental set up}
\label{fig:setup}
\end{figure}
\end{minipage} % Do not put another blank line after this line because
%that will mess up the alignment of the two minipages
\begin{minipage}[t]{\onecolwid}
The schematic view of the experimental set up is shown in the Figure
\ref{fig:setup}:
\begin{itemize}
\item Low momentum muon beam: to ensure a high rate of stopped
muons, and a well determined range of muons in the targets. A
cloud muon of 30 $-$ 34 MeV/c from a surface muon channel is
optimal.
\item The charged particles are measured by dE/dx method
by two pairs of silicon detectors. Active area of each silicon
detector is 5$\times$5 cm$^2$, the dE detectors are 65 $\mu m$
thick, and the E detectors are 1500 $\mu m$ thick.
\item Muon normalization: muonic X-ray measurement by a germanium
detector.
\item Correction for energy loss of charged particles in the
targets: using a response function obtained from the use of the
active silicon target, where the energy loss can be measured. A
waveform digitizer will be used to readout signals from the
active target.
\end{itemize}
\end{minipage}
\end{block}
\vskip2ex
% Simulation result
\begin{block}{Calculations}
\begin{itemize}
\item Using Geant4, with assumptions:
\begin{itemize}
\item [-] Muon momentum 30 MeV/c, momentum spread 5\%.
\item [-] Muon intensity: 10$^4$ muons/sec.
\item [-] Proton emission rate is 0.15 per muon capture, the same
value as being used in COMET and Mu2e calculations.
\item [-] Efficiency of silicon detectors are 100\%.
\item [-] Energy resolution (FWHM) of silicon detectors are: 140
keV for the 65 $\mu m$-thick detectors, and 40 keV for the
$140 \mu m$-thick detectors.
\end{itemize}
\item Simulation results of particle identification and rate
estimation is shown in Figure \ref{fig:dEdx} and Table
\ref{tb:rates}.
\end{itemize}
%\begin{minipage}[]{1.1\onecolwid}
\begin{figure}[]
\includegraphics[width=1.25\onecolwid]{figs/dEdx}
\caption{Particle identification with two silicon detectors}
\label{fig:dEdx}
\end{figure}
%\end{minipage}
%\begin{minipage}[c]{0.9\onecolwid}
%\begin{table}[htb!]
%\begin{center}
%\begin{tabular}{|c|c|c|c|c|c|} \hline
%Target & \% Stopping & Event rate (Hz) & Event rate (Hz) \\
%thickness ($\mu$m)& in target & All particles & Protons \\
%\hline
%50 & 2 & 8.1 & 1.0 \\ \hline
%100 & 16 & 21.3 & 1.5 \\ \hline
%150 & 38 & 39.9 & 2.1 \\ \hline
%200 & 53 & 51.1 & 2.4 \\ \hline
%\end{tabular}
%\end{center}
%\caption{Estimated event rates for various targets of different
%thickness. }
%\label{tb:rates}
%\end{table}
%\end{minipage}
\end{block}
%\begin{columns}[t,totalwidth=\twocolwid] % split up that three-column-wide column
%\begin{column}{\onecolwid}
%\setbeamercolor{block title}{fg=red,bg=white}%frame color
%\setbeamercolor{block body}{fg=black,bg=white}%body color
%\begin{block}{Block Colours}
%For the standard blocks there are two colours; one for the title and one for the block body:\\
%\begin{semiverbatim}
%{\color{red}\\setbeamercolor}\{block title\}\newline \{fg=red,bg=white\}
%\end{semiverbatim}
%\begin{semiverbatim}
%{\color{red}\\setbeamercolor}\{block body\}\newline \{fg=black,bg=white\}
%\end{semiverbatim}
%The \emph{fg} colour sets the text colour and \emph{bg} sets the background colour.
%For the normal blocks it makes no sense to use a background colour other than white. You \emph{can} change it, but it will look weird!
%\end{block}
%\end{column}
%\begin{column}{\onecolwid}
%\setbeamercolor{block alerted title}{fg=black,bg=norange} % frame color
%\setbeamercolor{block alerted body}{fg=black,bg=white} % body color
%\begin{alertblock}{Alert Block Colours}
%You can similarly modify the colours for alert blocks (but try not to overdo it):\\
%\begin{semiverbatim}
%{\color{red}\\setbeamercolor}\{block title\}\newline \{fg=black,bg=norange\}
%\end{semiverbatim}
%\begin{semiverbatim}
%{\color{red}\\setbeamercolor}\{block body\}\newline \{fg=black,bg=white\}
%\end{semiverbatim}
%\end{alertblock}
%\end{column}
%\end{columns}
%\vskip2.5ex
\end{column}
%\begin{column}{0.3\sepwid}
%\end{column} % empty spacer column
\begin{column}{\onecolwid}
\begin{block}{Calculations (cont.)}
\begin{table}[htb!]
\begin{center}
\scalebox{0.95}{
\begin{tabular}{|c|c|c|c|c|c|} \hline
Target & \% Stopping & Event rate (Hz) & Event rate (Hz) \\
thickness ($\mu$m)& in target & All particles & Protons \\
\hline
50 & 2 & 8.1 & 1.0 \\ \hline
100 & 16 & 21.3 & 1.5 \\ \hline
150 & 38 & 39.9 & 2.1 \\ \hline
200 & 53 & 51.1 & 2.4 \\ \hline
\end{tabular}
}
\end{center}
\caption{Estimated event rates for various targets of different
thickness. }
\label{tb:rates}
\end{table}
\end{block}
\vskip2ex
\begin{block}{Plan}
\begin{itemize}
\item July 2012: submitted the proposal to TRIUMF as experiment
S1371, requested 36 shifts (3 weeks) beam time
\item September 2012: the proposal was accepted with high priority
\item Late November 2012: beam test
\item Early 2013: physics run, 36 shifts
\item A proposal will be submitted to PSI
\end{itemize}
\end{block}
\vskip2ex
\begin{block}{References}
Some references and a graphic to show you how it's done:
\small{\begin{thebibliography}{99}
\bibitem{KLPL06} D.~W. Kribs, R. Laflamme, D. Poulin, M. Lesosky, Quantum Inf. \& Comp. \textbf{6} (2006), 383-399.
\bibitem{zanardi97} P. Zanardi, M. Rasetti, Phys. Rev. Lett. \textbf{79}, 3306 (1997).
\end{thebibliography}}
\vspace{0.75in}
\begin{center}
\includegraphics[width=5in]{figs/canada.jpg}
\end{center}
\end{block}
\end{column}
\end{columns}
\hspace{12mm}\begin{beamercolorbox}[wd=1165mm,colsep=0.15cm]{cboxb}\end{beamercolorbox}
\end{frame}
\end{document}