Files
writeup/AEPSHEPposter/poster2.tex

342 lines
15 KiB
TeX

%==============================================================================
%== template for LATEX poster =================================================
%==============================================================================
%
%--A0 beamer slide-------------------------------------------------------------
\documentclass[final]{beamer} % use beamer
\usepackage[orientation=portrait,
size=a0, % poster size
scale=1.35 % font scale factor
]{beamerposter} % beamer in poster size
%
%--some needed packages--------------------------------------------------------
\usepackage[american]{babel} % language
\usepackage[utf8]{inputenc} % std linux encoding
\usepackage{booktabs}
\usepackage{multirow}
%
%==The poster style============================================================
\usetheme{cpbgposter} % our poster style
%--set colors for blocks (without frame)---------------------------------------
\setbeamercolor{block title}{fg=ngreen,bg=white}
\setbeamercolor{block body}{fg=black,bg=white}
%--set colors for alerted blocks (with frame)----------------------------------
%--textcolor = fg, backgroundcolor = bg, dblue is the jacobs blue
\setbeamercolor{block alerted title}{fg=white,bg=dblue!70}%frame color
\setbeamercolor{block alerted body}{fg=black,bg=dblue!10}%body color
%
\usecaptiontemplate{
\small
\structure{\insertcaptionname~\insertcaptionnumber:}
\insertcaption}
%==Titel, date and authors of the poster=======================================
%\title{Template for \LaTeX poster using the\\
%Computational Physics and Biophysics Group style}
%\title{Study of Muon Capture \\
%for $\boldsymbol{\mu^--e^-}$ Conversion Experiments}
\title{A Search for $\boldsymbol{\mu-e}$ Conversion \\
\vskip0.5ex
and a Study of Muon Capture Backgrounds}
\author{Tran Hoai Nam}
\institute{Department of Physics, Graduate School of Science, Osaka Univerity}
\date{\today}
%
%==some usefull qm commands====================================================
% |x>
\newcommand{\ket}[1]{\left\vert#1\right\rangle}
% <x|
\newcommand{\bra}[1]{\left\langle#1\right\vert}
% <x|y>
\newcommand{\braket}[2]{\left< #1 \vphantom{#2}\,
\right\vert\left.\!\vphantom{#1} #2 \right>}
% <x|a|y>
\newcommand{\sandwich}[3]{\left< #1 \vphantom{#2 #3} \right|
#2 \left|\vphantom{#1 #2} #3 \right>}
% d/dt
\newcommand{\ddt}{\frac{d}{dt}}
% D/Dx
\newcommand{\pdd}[1]{\frac{\partial}{\partial#1}}
% |x|
\newcommand{\abs}[1]{\left\vert#1\right\vert}
% k_{x}
\newcommand{\kv}[1]{\mathbf{k}_{#1}}
\newlength{\sepwid}
\newlength{\onecolwid}
\newlength{\twocolwid}
\setlength{\sepwid}{0.04\paperwidth}
\setlength{\onecolwid}{0.28\paperwidth}
\setlength{\twocolwid}{0.60\paperwidth}
%==============================================================================
%==the poster content==========================================================
%==============================================================================
\begin{document}
%--the poster is one beamer frame, so we have to start with:
\begin{frame}[t]
%--to seperate the poster in columns we can use the columns environment
\begin{columns}[t] % the [t] options aligns the columns content at the top
\begin{column}{0.28\paperwidth}% the right size for a 3-column layout
%--abstract block--------------------------------------------------------
\begin{block}{Introduction - Searches for cLFV}
\begin{itemize}
\item Charged lepton flavor violation (cLFV) is forbidden in the
Standard Model. However, it is predicted to occur in various
extensions of the model. Experimental observation
of cLFV process is a clear evidence of new physics beyond the
SM.
%\ref{fig:SMmeg}).
%\begin{figure}[h!]
%\begin{center}
%\includegraphics[width=0.8\onecolwid]{figs/SM-meg2}
%\end{center}
%\caption{One of the diagrams of massive neutrino contributions to
%$\mu \rightarrow e\gamma$}
%\label{fig:SMmeg}
%\end{figure}
\item Two major experiments are going to start to search for the
cLFV \textcolor{red}{$\mu-e$ conversion}: COMET and Mu2e.
%\vskip1ex
\begin{figure}[h!]
\begin{center}
\includegraphics[width=0.95\onecolwid]{figs/mueconv}
\end{center}
\caption{What and Why $\mu-e$ conversion}
\label{fig:mueconv}
\end{figure}
\item The COMET stands for COherent Muon to Electron Transition.
It has been approved by J-PARC in 2009 as experiment J-PARC E21.
The experiment will search for $\mu-e$ conversion on aluminum
target with a single-event sensitivity 10,000 times better
than the current limit. The COMET uses staging approach with two
phases \cite{loi}:
\begin{itemize}
\item [-] COMET Phase I (physics run in 2017): background study
for Phase II, and search for $\mu-e$ conversion with a
sensitivity of $\color{red}3.1\times10^{-15}$
\item [-] COMET Phase II (physics run in 2019): search for
$\mu-e$ conversion at a sensitivity of
$\color{red}3\times10^{-17}$
\begin{figure}[h!]
\begin{center}
\includegraphics[width=0.95\onecolwid]{figs/cometscheme}
\end{center}
\caption{Schematic lay out of the COMET Phase I and COMET
Phase II}
\label{fig:cometscheme}
\end{figure}
\end{itemize}
%\item Event signal of $\mu - e$ conversion: a single mono-energetic
%electron at 105 MeV
\item One issue of the experiment at Phase I: \textcolor{red}
{hit rate on the tracking detectors}. In order to optimize the
targets and the absorber, a study of charged particles,
especially protons, emitted after muon capture is needed.
\begin{figure}[h!]
\centering
\includegraphics[width=0.88\onecolwid]{figs/issue2}
\caption{Concept of the tracking detectors}
\label{fig:issue}
\end{figure}
\item There are \textcolor{red}{no experimental data}, in the
\textcolor{red}{relevant energy range}, on the
products of muon capture from \textcolor{red}{Al, and Ti target}.
Both COMET and Mu2e are using extrapolated data from a
measurement on an active Si target in 1968.
\begin{figure}[h!]
\includegraphics[width=0.85\onecolwid]{figs/si-proton}
\caption{Charged particles spectrum after muon capture on
Si$^{28}$ \cite{sidata}}
\label{fig:sidata}
\end{figure}
\end{itemize}
\end{block}
%% The proton measurement experiment
\end{column}
%===rightcolumn=================================================================
% here the the middle and right column are put into one big column, this allows
% to change between 2 and 3 column style
\begin{column}{0.60\paperwidth} %thats the big right column
\begin{block}{The new measurement of charged particles emission
from muon capture}
\begin{itemize}
\item A joint collaboration between COMET and Mu2e
\item Goals of the experiment:
\begin{itemize}
\item[$\bullet$] measure \textcolor{red}{rate and energy
spectra} of the charged
particles (p, d, $\alpha$) emitted after muon capture on
some targets:
\begin{itemize}
\item [-] Al: default target of COMET and Mu2e
\item [-] Ti: possible target for future $\mu-e$
conversion experiments
\item [-] Si: active target, for cross-checking against
previous experiment, and studying the energy loss of
charged particles inside the targets
\end{itemize}
\item[$\bullet$] required precision: \textcolor{red}{5\%}
for both the rate and the
energy spectra in the range from 2.5 $-$ 12 MeV
\end{itemize}
\item Will be conducted at TRIUMF (Canada) and PSI
(Switzerland).
\end{itemize}
\end{block}
\vskip1ex
% Methods
\begin{block}{Methods}
\begin{figure}[]
\includegraphics[width=0.95\twocolwid]{figs/setupa}
\caption{Experimental setup: schematic view (left) and image (right)}
\label{fig:setup}
\end{figure}
\begin{minipage}[t]{\onecolwid}
\begin{itemize}
\item Low momentum muon beam: to ensure a high rate of stopped
muons, and a well determined range of muons in the targets. A
cloud muon of 30 $-$ 34 MeV/c from a surface muon channel is
optimal.
\item The charged particles are measured by dE/dx method
by two pairs of silicon detectors. Active area of each silicon
detector is 5$\times$5 cm$^2$, the dE detectors are 65 $\mu m$
thick, and the E detectors are 1500 $\mu m$ thick.
\end{itemize}
\end{minipage} % Do not put another blank line after this line because
%that will mess up the alignment of the two minipages
\begin{minipage}[t]{\onecolwid}
\begin{itemize}
\item Muon normalization: muonic X-ray measurement by a germanium
detector.
\item Correction for energy loss of charged particles in the
targets: using a response function obtained from the use of the
active silicon target, where the energy loss can be measured. A
waveform digitizer will be used to readout signals from the
active target.
\end{itemize}
\end{minipage}
\end{block}
\vskip2ex
%===two right columns===========================================================
% we have to give the total width for the column wich is equal to the sum of
% two colums and the space between them, this is needed to make shure the two
% cols take all the space of the 'mother' column
\begin{columns}[t,totalwidth=0.60\paperwidth]
% and then we put in two normal sized columns
\begin{column}{0.28\paperwidth}
%--the Left block-----------------------------------------------------------
\begin{block}{Calculations}
\begin{itemize}
\item Using Geant4, with assumptions:
\begin{itemize}
\item [$\bullet$] Muon momentum 30 MeV/c, momentum spread 5\%.
\item [$\bullet$] Muon intensity: 10$^4$ muons/sec.
\item [$\bullet$] Proton emission rate is 0.15 per muon capture,
the same value as that is being used in COMET designing
calculations
\item [$\bullet$] Energy resolution (FWHM) of silicon detectors
are: 140 keV for the 65 $\mu m$-thick detectors, and 40 keV for
the 140 $\mu m$-thick detectors.
\item [$\bullet$] Thickness of the beam counter scintillator: 0.5 mm
\end{itemize}
\item Simulation results of particle identification and rate
estimation is shown in Figure \ref{fig:dEdx} and Table
\ref{tb:rates}.
\end{itemize}
\vskip2ex
\begin{figure}[]
\includegraphics[width=0.95\onecolwid]{figs/dEdx}
\caption{Particle identification with two silicon detectors}
\label{fig:dEdx}
\end{figure}
\end{block}
\end{column}
%--the Right block--------------------------------------------------------------
\begin{column}{\onecolwid}
\begin{block}{Calculations (cont.)}
\begin{table}[h!]
\begin{center}
\scalebox{0.75}{
\begin{tabular}{cccc}
\toprule
Target & \% Stopping & Event rate (Hz) & Event rate (Hz) \\
thickness ($\mu$m)& in target & All particles & Protons \\
\midrule
50 & 2 & 8.1 & 1.0 \\
100 & 16 & 21.3 & 1.5 \\
150 & 38 & 39.9 & 2.1 \\
200 & 53 & 51.1 & 2.4 \\
\bottomrule
\end{tabular}
}
\end{center}
\caption{Estimated event rates for various targets of different
thickness. }
\label{tb:rates}
\end{table}
\end{block}
\vskip2ex
\begin{block}{Plan}
\begin{itemize}
\item July 2012: submitted the proposal to TRIUMF as experiment
S1371, requested 36 shifts (3 weeks) beam time
\item September 2012: the proposal was accepted with high priority
\item Late November 2012: beam test
\item Early 2013: physics run, 36 shifts
\item A proposal will be submitted to PSI
\end{itemize}
\end{block}
\vskip2ex
\begin{block}{References}
\small{\begin{thebibliography}{99}
%\bibitem{cdr} The COMET Collaboration, ``Conceptual Design Report for
%Experimental Search for Lepton Flavor Violating $\mu^--e^-$
%Conversion at
%Sensitivity of $10^{-16}$ with a Slow-Extracted Bunched Proton Beam
%(COMET)'', KEK-2009-10
\bibitem{loi} The COMET Collaboration, ``Letter of Intent for Phase-I
of the COMET Experiment at J-PARC'', J-PARC-2012-3
\bibitem{sidata} S. E. Sobottka and E. L. Wills, ``Energy Spectrum
of Charged Particles Emitted Following Muon Capture in Si$^{28}$'',
Phys. Rev. Lett. \textbf{20} (1968) 596-598.
\end{thebibliography}}
\end{block}
\end{column}
\end{columns}
%--wide text without block------------------------------------------------------
%Those pictures where drawn with the TikZ package, which is a perfect tool if
%you want to draw pictures or plot functions or data directly in \LaTeX. To
%get an impression of the possibilities of this package have a look at its
%manual \cite{pgf}. It is even possible to wonderfull frames around posters.
%\vskip2ex
\vskip3ex
%--Conclusion block-------------------------------------------------------------
% \begin{alertblock}{Conclusion}
% As you can see it is possible to make your poster very colorfull. But in
% most cases this will this will overload your poster. If you don't change
% the color settings you will get the default look, which consits of some
% shades of the jacobs blue and some decent green highlights. These colors
% where chosen carefully to keep a consistent look of the poster. The
% \emph{cpbgposter} style is installed our office computers, so you should be
% able to compile this example out of the box with pdflatex. If you want to
% work on your computer make sure that you have a recent TeX distribution
% (TeXlive 2008, Miktex) and download the beamerthemecpbgposter.sty file from
% our teamwork page and put it in your local TeX directory.
%
% If you have any questions, critics, ideas or if you just want to praise the
% awesome dude who created this insanely great poster style then don't
% hastitate to write an email to \emph{j.liebers@jacobs-university.de}
%% guess what this command is god for!
% \makeruleinbox
%% it works, but causes some underfull/overfull \hbox warnings
% \begin{center}
% {\huge\vskip-1ex
% {\color{nred}H}{\color{norange}a}{\color{nyellow}p}
% {\color{ngreen}p}{\color{dblue}y}\\
% \TeX'ing!}
% \end{center}
% \end{alertblock}
\end{column}
\end{columns}
\end{frame}
\end{document}