%============================================================================== %== template for LATEX poster ================================================= %============================================================================== % %--A0 beamer slide------------------------------------------------------------- \documentclass[final]{beamer} % use beamer \usepackage[orientation=portrait, size=a0, % poster size scale=1.35 % font scale factor ]{beamerposter} % beamer in poster size % %--some needed packages-------------------------------------------------------- \usepackage[american]{babel} % language \usepackage[utf8]{inputenc} % std linux encoding \usepackage{booktabs} \usepackage{multirow} % %==The poster style============================================================ \usetheme{cpbgposter} % our poster style %--set colors for blocks (without frame)--------------------------------------- \setbeamercolor{block title}{fg=ngreen,bg=white} \setbeamercolor{block body}{fg=black,bg=white} %--set colors for alerted blocks (with frame)---------------------------------- %--textcolor = fg, backgroundcolor = bg, dblue is the jacobs blue \setbeamercolor{block alerted title}{fg=white,bg=dblue!70}%frame color \setbeamercolor{block alerted body}{fg=black,bg=dblue!10}%body color % \usecaptiontemplate{ \small \structure{\insertcaptionname~\insertcaptionnumber:} \insertcaption} %==Titel, date and authors of the poster======================================= %\title{Template for \LaTeX poster using the\\ %Computational Physics and Biophysics Group style} %\title{Study of Muon Capture \\ %for $\boldsymbol{\mu^--e^-}$ Conversion Experiments} \title{A Search for $\boldsymbol{\mu-e}$ Conversion \\ \vskip0.5ex and a Study of Muon Capture Backgrounds} \author{Tran Hoai Nam} \institute{Department of Physics, Graduate School of Science, Osaka Univerity} \date{\today} % %==some usefull qm commands==================================================== % |x> \newcommand{\ket}[1]{\left\vert#1\right\rangle} % \newcommand{\braket}[2]{\left< #1 \vphantom{#2}\, \right\vert\left.\!\vphantom{#1} #2 \right>} % \newcommand{\sandwich}[3]{\left< #1 \vphantom{#2 #3} \right| #2 \left|\vphantom{#1 #2} #3 \right>} % d/dt \newcommand{\ddt}{\frac{d}{dt}} % D/Dx \newcommand{\pdd}[1]{\frac{\partial}{\partial#1}} % |x| \newcommand{\abs}[1]{\left\vert#1\right\vert} % k_{x} \newcommand{\kv}[1]{\mathbf{k}_{#1}} \newlength{\sepwid} \newlength{\onecolwid} \newlength{\twocolwid} \setlength{\sepwid}{0.04\paperwidth} \setlength{\onecolwid}{0.28\paperwidth} \setlength{\twocolwid}{0.60\paperwidth} %============================================================================== %==the poster content========================================================== %============================================================================== \begin{document} %--the poster is one beamer frame, so we have to start with: \begin{frame}[t] %--to seperate the poster in columns we can use the columns environment \begin{columns}[t] % the [t] options aligns the columns content at the top \begin{column}{0.28\paperwidth}% the right size for a 3-column layout %--abstract block-------------------------------------------------------- \begin{block}{Introduction - Searches for cLFV} \begin{itemize} \item Charged lepton flavor violation (cLFV) is forbidden in the Standard Model. However, it is predicted to occur in various extensions of the model. Experimental observation of cLFV process is a clear evidence of new physics beyond the SM. %\ref{fig:SMmeg}). %\begin{figure}[h!] %\begin{center} %\includegraphics[width=0.8\onecolwid]{figs/SM-meg2} %\end{center} %\caption{One of the diagrams of massive neutrino contributions to %$\mu \rightarrow e\gamma$} %\label{fig:SMmeg} %\end{figure} \item Two major experiments are going to start to search for the cLFV \textcolor{red}{$\mu-e$ conversion}: COMET and Mu2e. %\vskip1ex \begin{figure}[h!] \begin{center} \includegraphics[width=0.95\onecolwid]{figs/mueconv} \end{center} \caption{What and Why $\mu-e$ conversion} \label{fig:mueconv} \end{figure} \item The COMET stands for COherent Muon to Electron Transition. It has been approved by J-PARC in 2009 as experiment J-PARC E21. The experiment will search for $\mu-e$ conversion on aluminum target with a single-event sensitivity 10,000 times better than the current limit. The COMET uses staging approach with two phases \cite{loi}: \begin{itemize} \item [-] COMET Phase I (physics run in 2017): background study for Phase II, and search for $\mu-e$ conversion with a sensitivity of $\color{red}3.1\times10^{-15}$ \item [-] COMET Phase II (physics run in 2019): search for $\mu-e$ conversion at a sensitivity of $\color{red}3\times10^{-17}$ \begin{figure}[h!] \begin{center} \includegraphics[width=0.95\onecolwid]{figs/cometscheme} \end{center} \caption{Schematic lay out of the COMET Phase I and COMET Phase II} \label{fig:cometscheme} \end{figure} \end{itemize} %\item Event signal of $\mu - e$ conversion: a single mono-energetic %electron at 105 MeV \item One issue of the experiment at Phase I: \textcolor{red} {hit rate on the tracking detectors}. In order to optimize the targets and the absorber, a study of charged particles, especially protons, emitted after muon capture is needed. \begin{figure}[h!] \centering \includegraphics[width=0.88\onecolwid]{figs/issue2} \caption{Concept of the tracking detectors} \label{fig:issue} \end{figure} \item There are \textcolor{red}{no experimental data}, in the \textcolor{red}{relevant energy range}, on the products of muon capture from \textcolor{red}{Al, and Ti target}. Both COMET and Mu2e are using extrapolated data from a measurement on an active Si target in 1968. \begin{figure}[h!] \includegraphics[width=0.85\onecolwid]{figs/si-proton} \caption{Charged particles spectrum after muon capture on Si$^{28}$ \cite{sidata}} \label{fig:sidata} \end{figure} \end{itemize} \end{block} %% The proton measurement experiment \end{column} %===rightcolumn================================================================= % here the the middle and right column are put into one big column, this allows % to change between 2 and 3 column style \begin{column}{0.60\paperwidth} %thats the big right column \begin{block}{The new measurement of charged particles emission from muon capture} \begin{itemize} \item A joint collaboration between COMET and Mu2e \item Goals of the experiment: \begin{itemize} \item[$\bullet$] measure \textcolor{red}{rate and energy spectra} of the charged particles (p, d, $\alpha$) emitted after muon capture on some targets: \begin{itemize} \item [-] Al: default target of COMET and Mu2e \item [-] Ti: possible target for future $\mu-e$ conversion experiments \item [-] Si: active target, for cross-checking against previous experiment, and studying the energy loss of charged particles inside the targets \end{itemize} \item[$\bullet$] required precision: \textcolor{red}{5\%} for both the rate and the energy spectra in the range from 2.5 $-$ 12 MeV \end{itemize} \item Will be conducted at TRIUMF (Canada) and PSI (Switzerland). \end{itemize} \end{block} \vskip1ex % Methods \begin{block}{Methods} \begin{figure}[] \includegraphics[width=0.95\twocolwid]{figs/setupa} \caption{Experimental setup: schematic view (left) and image (right)} \label{fig:setup} \end{figure} \begin{minipage}[t]{\onecolwid} \begin{itemize} \item Low momentum muon beam: to ensure a high rate of stopped muons, and a well determined range of muons in the targets. A cloud muon of 30 $-$ 34 MeV/c from a surface muon channel is optimal. \item The charged particles are measured by dE/dx method by two pairs of silicon detectors. Active area of each silicon detector is 5$\times$5 cm$^2$, the dE detectors are 65 $\mu m$ thick, and the E detectors are 1500 $\mu m$ thick. \end{itemize} \end{minipage} % Do not put another blank line after this line because %that will mess up the alignment of the two minipages \begin{minipage}[t]{\onecolwid} \begin{itemize} \item Muon normalization: muonic X-ray measurement by a germanium detector. \item Correction for energy loss of charged particles in the targets: using a response function obtained from the use of the active silicon target, where the energy loss can be measured. A waveform digitizer will be used to readout signals from the active target. \end{itemize} \end{minipage} \end{block} \vskip2ex %===two right columns=========================================================== % we have to give the total width for the column wich is equal to the sum of % two colums and the space between them, this is needed to make shure the two % cols take all the space of the 'mother' column \begin{columns}[t,totalwidth=0.60\paperwidth] % and then we put in two normal sized columns \begin{column}{0.28\paperwidth} %--the Left block----------------------------------------------------------- \begin{block}{Calculations} \begin{itemize} \item Using Geant4, with assumptions: \begin{itemize} \item [$\bullet$] Muon momentum 30 MeV/c, momentum spread 5\%. \item [$\bullet$] Muon intensity: 10$^4$ muons/sec. \item [$\bullet$] Proton emission rate is 0.15 per muon capture, the same value as that is being used in COMET designing calculations \item [$\bullet$] Energy resolution (FWHM) of silicon detectors are: 140 keV for the 65 $\mu m$-thick detectors, and 40 keV for the 140 $\mu m$-thick detectors. \item [$\bullet$] Thickness of the beam counter scintillator: 0.5 mm \end{itemize} \item Simulation results of particle identification and rate estimation is shown in Figure \ref{fig:dEdx} and Table \ref{tb:rates}. \end{itemize} \vskip2ex \begin{figure}[] \includegraphics[width=0.95\onecolwid]{figs/dEdx} \caption{Particle identification with two silicon detectors} \label{fig:dEdx} \end{figure} \end{block} \end{column} %--the Right block-------------------------------------------------------------- \begin{column}{\onecolwid} \begin{block}{Calculations (cont.)} \begin{table}[h!] \begin{center} \scalebox{0.75}{ \begin{tabular}{cccc} \toprule Target & \% Stopping & Event rate (Hz) & Event rate (Hz) \\ thickness ($\mu$m)& in target & All particles & Protons \\ \midrule 50 & 2 & 8.1 & 1.0 \\ 100 & 16 & 21.3 & 1.5 \\ 150 & 38 & 39.9 & 2.1 \\ 200 & 53 & 51.1 & 2.4 \\ \bottomrule \end{tabular} } \end{center} \caption{Estimated event rates for various targets of different thickness. } \label{tb:rates} \end{table} \end{block} \vskip2ex \begin{block}{Plan} \begin{itemize} \item July 2012: submitted the proposal to TRIUMF as experiment S1371, requested 36 shifts (3 weeks) beam time \item September 2012: the proposal was accepted with high priority \item Late November 2012: beam test \item Early 2013: physics run, 36 shifts \item A proposal will be submitted to PSI \end{itemize} \end{block} \vskip2ex \begin{block}{References} \small{\begin{thebibliography}{99} %\bibitem{cdr} The COMET Collaboration, ``Conceptual Design Report for %Experimental Search for Lepton Flavor Violating $\mu^--e^-$ %Conversion at %Sensitivity of $10^{-16}$ with a Slow-Extracted Bunched Proton Beam %(COMET)'', KEK-2009-10 \bibitem{loi} The COMET Collaboration, ``Letter of Intent for Phase-I of the COMET Experiment at J-PARC'', J-PARC-2012-3 \bibitem{sidata} S. E. Sobottka and E. L. Wills, ``Energy Spectrum of Charged Particles Emitted Following Muon Capture in Si$^{28}$'', Phys. Rev. Lett. \textbf{20} (1968) 596-598. \end{thebibliography}} \end{block} \end{column} \end{columns} %--wide text without block------------------------------------------------------ %Those pictures where drawn with the TikZ package, which is a perfect tool if %you want to draw pictures or plot functions or data directly in \LaTeX. To %get an impression of the possibilities of this package have a look at its %manual \cite{pgf}. It is even possible to wonderfull frames around posters. %\vskip2ex \vskip3ex %--Conclusion block------------------------------------------------------------- % \begin{alertblock}{Conclusion} % As you can see it is possible to make your poster very colorfull. But in % most cases this will this will overload your poster. If you don't change % the color settings you will get the default look, which consits of some % shades of the jacobs blue and some decent green highlights. These colors % where chosen carefully to keep a consistent look of the poster. The % \emph{cpbgposter} style is installed our office computers, so you should be % able to compile this example out of the box with pdflatex. If you want to % work on your computer make sure that you have a recent TeX distribution % (TeXlive 2008, Miktex) and download the beamerthemecpbgposter.sty file from % our teamwork page and put it in your local TeX directory. % % If you have any questions, critics, ideas or if you just want to praise the % awesome dude who created this insanely great poster style then don't % hastitate to write an email to \emph{j.liebers@jacobs-university.de} %% guess what this command is god for! % \makeruleinbox %% it works, but causes some underfull/overfull \hbox warnings % \begin{center} % {\huge\vskip-1ex % {\color{nred}H}{\color{norange}a}{\color{nyellow}p} % {\color{ngreen}p}{\color{dblue}y}\\ % \TeX'ing!} % \end{center} % \end{alertblock} \end{column} \end{columns} \end{frame} \end{document}