update r15a_gamma report according to Jim's comments
This commit is contained in:
@@ -12,22 +12,40 @@
|
||||
detect-family=true,
|
||||
separate-uncertainty=true]{siunitx}
|
||||
% \usepackage{listings}
|
||||
\usepackage{xcolor}
|
||||
\usepackage[dvipsnames]{xcolor}
|
||||
\usepackage{upquote}
|
||||
\usepackage{minted}
|
||||
\usemintedstyle{perldoc}
|
||||
|
||||
\usepackage[framemethod=tikz]{mdframed}
|
||||
\usepackage{adjustbox}
|
||||
|
||||
\definecolor{greybg}{rgb}{0.25,0.25,0.25}
|
||||
\definecolor{yellowbg}{rgb}{0.91, 0.84, 0.42}
|
||||
\definecolor{bananamania}{rgb}{0.98, 0.91, 0.71}
|
||||
% \definecolor{greybg}{rgb}{0.25,0.25,0.25}
|
||||
% \definecolor{yellowbg}{rgb}{0.91, 0.84, 0.42}
|
||||
% \definecolor{bananamania}{rgb}{0.98, 0.91, 0.71}
|
||||
|
||||
\mdfsetup{%
|
||||
middlelinecolor=red,
|
||||
middlelinewidth=1pt,
|
||||
\mdfdefinestyle{warning}{%
|
||||
linecolor=red!70,
|
||||
frametitle={Warning},
|
||||
frametitlerule=true,
|
||||
frametitlebackgroundcolor=orange!40,
|
||||
backgroundcolor=orange!30,
|
||||
innertopmargin=\topskip,
|
||||
roundcorner=8pt,
|
||||
linewidth=1pt,
|
||||
}
|
||||
% \mdtheorem[style=theoremstyle]{warning}{Warning}
|
||||
|
||||
\mdfdefinestyle{listing}{%
|
||||
linecolor=Aquamarine!50,
|
||||
linewidth=1pt,
|
||||
backgroundcolor=yellow!40,
|
||||
roundcorner=8pt}
|
||||
roundcorner=8pt,
|
||||
% frametitlerule=true,
|
||||
% frametitlebackgroundcolor=yellow!50,
|
||||
innertopmargin=\topskip,
|
||||
}
|
||||
% \mdtheorem[style=listing]{listing}{Listing}
|
||||
|
||||
% \DeclareSIUnit\eVperc{\eV\per\clight}
|
||||
% \DeclareSIUnit\clight{\text{\ensuremath{c}}}
|
||||
@@ -86,16 +104,16 @@ The study was done using Mu2e Offline version v6\textunderscore
|
||||
TS5 (see \cref{fig:stm_geo_all}), taking \texttt{cd3-beam-g4s2-mubeam.0728a}
|
||||
dataset as input. The dataset contains 5098 files, each corresponds to
|
||||
\num{1e6} proton-on-target (POT). The dataset were reused 16 times with
|
||||
different random seeds, where \SI{97}{\percent} of runs succeeded, equivalent
|
||||
to \num{8e11} POTs.
|
||||
different random seeds, where \SI{97.6}{\percent} of runs succeeded, equivalent
|
||||
to \num{7.96e10} POTs.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=1.0\textwidth]{figs/stm_geo_all}
|
||||
\caption{Simulation geometry showing the DS region on the left, sweeper magnet,
|
||||
FOV collimator, spot-size collimator, and the STM detectors on the right.
|
||||
Particles saved in the input files are shoot from the TS5 (orange circle),
|
||||
and transported to the STM region.}
|
||||
\caption{Simulation geometry showing the Detector Solenoid region on the
|
||||
left, sweeper magnet, Field-Of-View collimator, Spot-Size collimator, and
|
||||
the STM detectors on the right. Particles saved in the input files are
|
||||
shoot from the TS5 (orange circle), and transported to the STM region.}
|
||||
\label{fig:stm_geo_all}
|
||||
\end{figure}
|
||||
|
||||
@@ -112,6 +130,8 @@ the output file.
|
||||
\centering
|
||||
\caption{List of virtual detectors read out in this study}
|
||||
\label{tab:vds_list}
|
||||
\begin{adjustbox}{max width=\textwidth}
|
||||
|
||||
\begin{tabular}{@{}ccll@{}}
|
||||
\toprule
|
||||
&VDID & Location & Abbreviation \\
|
||||
@@ -126,6 +146,7 @@ the output file.
|
||||
8 & 100 & Downstream of the FOV collimator & STM\textunderscore FieldOfViewCollDnStr \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
\end{adjustbox}
|
||||
\end{table}
|
||||
|
||||
\section{Simulation and analysis code}
|
||||
@@ -135,13 +156,13 @@ The simulation and analysis code are located at:
|
||||
\url{/mu2e/app/users/namtran/STM_study_201611}.
|
||||
|
||||
% \lstinputlisting[language=bash,frame=single]{listings/code_dir_tree.sh}
|
||||
\begin{mdframed}
|
||||
\begin{mdframed}[style=listing]
|
||||
\inputminted[fontsize=\footnotesize]{bash}{listings/code_dir_tree.sh}
|
||||
\end{mdframed}
|
||||
|
||||
\texttt{step00} contains configuration files for this simulation and a script to
|
||||
submit all 5098 jobs (correspond to number of input files) to the FermiGrid.
|
||||
It took about 14 hours to complete a job in average.
|
||||
submit all 5098 jobs to the FermiGrid. It took about 14 hours to complete one
|
||||
job in average.
|
||||
|
||||
The \texttt{analysis} folder contains a script
|
||||
(\texttt{run\textunderscore statistics.sh}) which checks if a job has finished
|
||||
@@ -151,25 +172,30 @@ make plots.
|
||||
|
||||
\section{Results}
|
||||
\label{sec:results}
|
||||
\subsection{STM detector spectra}
|
||||
\label{sub:stm_detector_spectra}
|
||||
\begin{mdframed}[style=warning]
|
||||
Muonic X-rays and probabilities in the simulation are not correct (see
|
||||
\cref{sec:muonic_x_rays_in_geant4}).
|
||||
\end{mdframed}
|
||||
|
||||
Energy spectrum of particles hitting STM detectors are presented in
|
||||
\cref{fig:stm_det_ke}. There were not many hits, and only the annihilation
|
||||
peak stands out. Most of the particles are photons as shown in
|
||||
\subsection{STM detector energy spectra}
|
||||
\label{sub:stm_detector_spectra}
|
||||
Energy spectrum of particles hitting STM detectors in the range
|
||||
\SIrange{0.1}{3.1}{\MeV} are presented in \cref{fig:stm_det_ke}. There were not many
|
||||
hits, and only the annihilation peak stands out. Most of the particles are
|
||||
photons as shown in
|
||||
\cref{fig:stm_det_ptype}.
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=0.7\textwidth]{figs/ke_det1UpStr}
|
||||
\includegraphics[width=0.7\textwidth]{figs/ke_det2UpStr}
|
||||
\includegraphics[width=0.85\textwidth]{figs/ke_det1UpStr}
|
||||
\includegraphics[width=0.85\textwidth]{figs/ke_det2UpStr}
|
||||
\caption{Kinetic energy of particles hitting STM detectors 1 (top), and
|
||||
2 (bottom).}
|
||||
\label{fig:stm_det_ke}
|
||||
\end{figure}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=0.7\textwidth]{figs/ke_pdg_det1UpStr}
|
||||
\includegraphics[width=0.7\textwidth]{figs/ke_pdg_det2UpStr}
|
||||
\includegraphics[width=\textwidth]{figs/ke_pdg_det1UpStr}
|
||||
\includegraphics[width=\textwidth]{figs/ke_pdg_det2UpStr}
|
||||
\caption{Kinetic energy and type of particles hitting STM detectors 1 (top),
|
||||
and 2 (bottom).}
|
||||
\label{fig:stm_det_ptype}
|
||||
@@ -179,32 +205,138 @@ peak stands out. Most of the particles are photons as shown in
|
||||
\label{sub:stm_detector_hit_rate_estimation}
|
||||
The average number of hits on a STM detector per POT is:
|
||||
\begin{equation}
|
||||
\frac{888 + 888}{2 \times 8 \times 10^{11}} = 8.7 \times 10^{-9}.
|
||||
\frac{672 + 714}{2 \times 7.96 \times 10^{10}} = 8.7 \times 10^{-9}.
|
||||
\label{eqn:stm_hit_count}
|
||||
\end{equation}
|
||||
There are 3.1 POTs per proton bunch, so the number of hits per bunch is:
|
||||
There would be \num{3.1e7} POTs per proton bunch, so the number of hits each
|
||||
bunch is:
|
||||
\begin{equation}
|
||||
8.7 \times 10^{-9} \times 3.1 \times 10^7 = 0.27
|
||||
8.7 \times 10^{-9} \times 3.1 \times 10^7 = 0.27.
|
||||
\end{equation}
|
||||
The instantaneous hit rate, assuming an interval of \SI{1695}{\ns} between
|
||||
bunches, is:
|
||||
\begin{equation}
|
||||
\frac{0.27}{1695\times 10^{-9}} = \SI{159e3}{\Hz}
|
||||
\frac{0.27}{1695\times 10^{-9}} = \SI{158.9e3}{\Hz}
|
||||
\end{equation}
|
||||
|
||||
\section{Timing of hits on STM detector}
|
||||
\label{sec:timing_of_hits_on_stm_detector}
|
||||
The uncertainty on the hit rate estimation is \SI{2.6}{\percent} if
|
||||
only statistical uncertainty of the hit counting in \cref{eqn:stm_hit_count} is
|
||||
taken into account. This hit rate is too high for a HPGe detector to function
|
||||
well, so an attenuator would be installed upstream of the spot-size collimator
|
||||
to lower the hit rate to about \SI{10}{\kHz}.
|
||||
|
||||
\section{Signal to background ratio}
|
||||
\label{sec:signal_to_background_ratio}
|
||||
\subsection{Hit timing on STM detectors}
|
||||
\label{sub:timing_of_hits_on_stm_detectors}
|
||||
Timing in the simulation starts from the birth of a primary proton, which means
|
||||
all events start at the same $t = 0$ time. In order to mimic the pulse
|
||||
structure of the proton beam (\SI{250}{\ns} pulse width, \SI{1695}{\ns} between
|
||||
pulses~\cite{Bartoszek2014}), the recorded times on each event are smeared by
|
||||
a Gaussian distribution with a $\sigma = 250 / 6 = \SI{41.7}{\ns}$.
|
||||
|
||||
The hit timing as a function of kinetic energy for several virtual detectors
|
||||
are shown in \cref{fig:ke_time_4vds}. Most of hits arrive between
|
||||
\num{100} and \SI{400}{\ns} from the center of a proton pulse. Only a few of
|
||||
particles could hit the STM detectors, especially in the energy region around
|
||||
the $2p-1s$ peak, that it is hard to investigate the
|
||||
dependence between timing and energy of hits. Therefore I will only analyze the
|
||||
timing information of hits STM\_SpotSizeCollUpStr.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=1.0\textwidth]{figs/ke_time_4vds}
|
||||
\caption{Hit timing as a function of kinetic energy at spot size
|
||||
collimator upstream (top left) and down stream (top right), and two STM
|
||||
detectors (bottom left and right).}
|
||||
\label{fig:ke_time_4vds}
|
||||
\end{figure}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Signal to background ratio: $2p-1s$ peak at spot-size collimator
|
||||
upstream}
|
||||
\label{sub:signal_to_background_ratio_2p_1s_peak_at_spot_size_collimator_upstream}
|
||||
The energy of muonic $2p-1s$ transition in aluminum is given as \SI{335}{\keV}
|
||||
by Geant4. Background is taken as the average counts for 10 bins around
|
||||
\SI{335}{\keV}, and signal strength is calculated by subtracting the background
|
||||
from the count under the peak. Energy spectra at spot-size
|
||||
collimator upstream (VD 101: STM\_SpotSizeCollUpStr) in \SI{50}{\ns} windows
|
||||
and their signal-to-background ratios are shown in
|
||||
\cref{fig:ke_SpotSizeCollUpStr_time_slices}.
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=1.0\textwidth]{figs/ke_SpotSizeCollUpStr_time_slices}
|
||||
\caption{Energy spectra at STM\_SpotSizeCollUpStr and signal-to-background
|
||||
ratios in 50-ns time windows.}
|
||||
\label{fig:ke_SpotSizeCollUpStr_time_slices}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Signal to background ratio: \SI{1809}{\keV} at spot-size collimator
|
||||
upstream}
|
||||
\label{sub:signal_to_background_ratio_1809_kev_at_spot_size_collimator_upstream}
|
||||
|
||||
Muonic X-rays and probabilities in the simulation are not correct, see
|
||||
\cref{sec:muonic_x_rays_in_geant4}.
|
||||
|
||||
%%%% Appendices
|
||||
\pagebreak
|
||||
\appendix
|
||||
\section{How to run the simulation and analyze data}
|
||||
%%%%%%%%%%%%%%%%%%%
|
||||
\label{sec:how_to_run_the_simulation_and_analyze_data}
|
||||
\subsection{Simulating beam flash}
|
||||
\label{sub:simulating_beam_flash}
|
||||
Simulation scripts are in:
|
||||
\url{/mu2e/app/users/namtran/STM_study_201611/step00}:
|
||||
\begin{itemize}
|
||||
\item \url{fcl/step00.fcl}: configuration for this study (primary particles,
|
||||
virtual detectors to be read out, particle filtering, ...)
|
||||
\item \url{geom/geom.txt}: specify geometry settings (thickness
|
||||
of shields, enabled virtual detectors, ...)
|
||||
\item \url{submit.sh}: submit all jobs (5098) in the
|
||||
\url{cd3-beam-g4s2-mubeam.0728a.list} to the grid
|
||||
\end{itemize}
|
||||
|
||||
\noindent Steps to run the simulation:
|
||||
\begin{itemize}
|
||||
\item preparing user's code: follow Mu2e instruction to create an
|
||||
\texttt{Offline} distribution (mine is at
|
||||
\url{/mu2e/app/users/namtran/Offline}),
|
||||
|
||||
\item setting up \texttt{mu2e} environment \footnote{I used \texttt{mu2egrid}
|
||||
version \texttt{v3\_02\_00} which supports \texttt{mu2eart} command}:
|
||||
\begin{mdframed}[style=listing]
|
||||
\inputminted[
|
||||
fontsize=\scriptsize,
|
||||
firstline=1,
|
||||
lastline=11,
|
||||
breaklines=true,
|
||||
breakanywhere=true
|
||||
]{bash}{listings/runall.sh}
|
||||
\end{mdframed}
|
||||
|
||||
\item submitting all jobs:
|
||||
\begin{mdframed}[style=listing]
|
||||
\inputminted[
|
||||
fontsize=\scriptsize,
|
||||
firstline=13,
|
||||
breaklines=true,
|
||||
breakanywhere=true
|
||||
]{bash}{listings/runall.sh}
|
||||
\end{mdframed}
|
||||
\end{itemize}
|
||||
|
||||
\noindent Analysis code
|
||||
\url{/mu2e/app/users/namtran/STM_study_201611/analysis}:
|
||||
\begin{itemize}
|
||||
\item \texttt{run\_statistics}: skims the log files (\texttt{mu2e.log} in
|
||||
each subdirectory`) to make a list of successful runs, and collect CPU
|
||||
time, random seeds. This script should be run first.
|
||||
|
||||
\item \texttt{main.cc}: the analysis code, it is rather simple now, only
|
||||
exports a few histograms from virtual detector hits. Run \texttt{make}
|
||||
to produce the executable \texttt{read\_vd}.
|
||||
\item \texttt{read\_vd}: takes a list of simulation outputs as input to
|
||||
produce a single ROOT file which contains several histograms.
|
||||
\end{itemize}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%
|
||||
\section{Muonic X-rays in Geant4}
|
||||
\label{sec:muonic_x_rays_in_geant4}
|
||||
The muonic energy levels and transition probabilities were calculated using
|
||||
@@ -216,7 +348,7 @@ a simple model described by Mukhopadhyay~\cite{Mukhopadhyay.1977}.
|
||||
% language=c++, firstline=64, lastline=93,firstnumber=64,
|
||||
% breaklines=true, breakatwhitespace=true,
|
||||
% frame=single]{listings/G4EmCaptureCascade.cc}
|
||||
\begin{mdframed}
|
||||
\begin{mdframed}[style=listing]
|
||||
\inputminted[
|
||||
breaklines=true,
|
||||
stepnumber=5,
|
||||
@@ -227,7 +359,7 @@ a simple model described by Mukhopadhyay~\cite{Mukhopadhyay.1977}.
|
||||
\end{mdframed}
|
||||
\item Energy of K-shell muons are calculated from energy of K-shell
|
||||
electrons:
|
||||
\begin{mdframed}
|
||||
\begin{mdframed}[style=listing]
|
||||
\inputminted[
|
||||
breaklines=true,
|
||||
stepnumber=5,
|
||||
@@ -238,7 +370,7 @@ a simple model described by Mukhopadhyay~\cite{Mukhopadhyay.1977}.
|
||||
\end{mdframed}
|
||||
\item Energies of muons on other shells are calculated by scaling from that
|
||||
of K-shell muons:
|
||||
\begin{mdframed}
|
||||
\begin{mdframed}[style=listing]
|
||||
\inputminted[
|
||||
breaklines=true,
|
||||
stepnumber=5,
|
||||
|
||||
Reference in New Issue
Block a user