prog saved
This commit is contained in:
@@ -382,7 +382,8 @@ the cut on protons is estimated to be small compared to the statistical ones.
|
|||||||
\subsection{Corrections for the number of protons}
|
\subsection{Corrections for the number of protons}
|
||||||
\label{sub:corrections_for_the_number_of_protons}
|
\label{sub:corrections_for_the_number_of_protons}
|
||||||
The protons spectra observed by the silicon detectors have been modified by
|
The protons spectra observed by the silicon detectors have been modified by
|
||||||
the energy loss inside the target so correction (or unfolding) is necessary.
|
the energy loss inside the target so correction (also called unfolding, or
|
||||||
|
reconstruction) is necessary.
|
||||||
The unfolding, essentially, is finding a response function that relates proton's
|
The unfolding, essentially, is finding a response function that relates proton's
|
||||||
true energy and measured value. This can be done in MC simulation by generating
|
true energy and measured value. This can be done in MC simulation by generating
|
||||||
protons with a spatial distribution as close as possible to the real
|
protons with a spatial distribution as close as possible to the real
|
||||||
@@ -413,4 +414,57 @@ method is implemented.
|
|||||||
\label{fig:al100_resp_matrices}
|
\label{fig:al100_resp_matrices}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
After training the unfolding code is applied on the measured spectra from the
|
After training the unfolding code is applied on the measured spectra from the
|
||||||
left and right arms. The unfolded proton spectra
|
left and right arms. The unfolded proton spectra in \cref{fig:al100_unfold}
|
||||||
|
reasonably reflect the distribution of initial protons which is off-centred to
|
||||||
|
the right arm. The path length to the left arm is longer so less protons at
|
||||||
|
energy lower than \SI{5}{\MeV} could reach the detectors. The sharp low-energy
|
||||||
|
cut off on the right arm is consistent with the Coulomb barrier for protons,
|
||||||
|
which is \SI{4.1}{\MeV} for protons emitted from $^{27}$Mg.
|
||||||
|
|
||||||
|
Comparing the reconstructed spectra from \SIrange{5}{8}{\MeV}, the protons
|
||||||
|
yields are consistent with each other:
|
||||||
|
\begin{align}
|
||||||
|
N_{\textrm{p reco. left}} &= (110.9 \pm 2.0)\times 10^3\\
|
||||||
|
N_{\textrm{p reco. right}} &= (110.2 \pm 2.3)\times 10^3
|
||||||
|
\end{align}
|
||||||
|
Therefore, the number of emitted protons is taken as average value:
|
||||||
|
\begin{equation}
|
||||||
|
N_{\textrm{p reco.}} = (110.6 \pm 2.2) \times 10^3
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{figure}[htb]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.85\textwidth]{figs/al100_unfold}
|
||||||
|
\caption{Unfolded proton spectra from the 100-\si{\um} aluminium target.}
|
||||||
|
\label{fig:al100_unfold}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\subsection{Number of nuclear captures}
|
||||||
|
\label{sub:number_of_nuclear_captures}
|
||||||
|
\begin{figure}[htb]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.85\textwidth]{figs/al100_ge_spec}
|
||||||
|
\caption{X-ray spectrum from the aluminium target, the characteristic
|
||||||
|
$(2p-1s)$ line shows up at 346.67~keV}
|
||||||
|
\label{fig:al100_ge_spec}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
The X-ray spectrum on the germanium detector is shown on
|
||||||
|
\cref{fig:al100_ge_spec}. Fitting the double peaks on top of a first-order
|
||||||
|
polynomial gives the X-ray peak area of $5903.5 \pm 109.2$. With the same
|
||||||
|
procedure as in the case of the active target, the number stopped muons and
|
||||||
|
the number of nuclear captures are:
|
||||||
|
\begin{align}
|
||||||
|
N_{\mu \textrm{ stopped}} &= (1.57 \pm 0.05)\times 10^7\\
|
||||||
|
N_{\mu \textrm{ nucl. cap.}} &= (9.57\pm 0.31)\times 10^6
|
||||||
|
\end{align}
|
||||||
|
The proton emission rate in the range from \SIrange{5}{8}{\MeV} is therefore:
|
||||||
|
\begin{equation}
|
||||||
|
R_{\textrm{p}} = \frac{110.6\times 10^3}{9.57\times 10^6} = 1.16\times
|
||||||
|
10^{-2}
|
||||||
|
\label{eq:proton_rate_al}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\subsection{Uncertainties of the emission rate}
|
||||||
|
\label{sub:uncertainties_of_the_emission_rate}
|
||||||
|
|
||||||
|
|||||||
@@ -32,8 +32,8 @@ for the COMET experiment}
|
|||||||
%\input{chapters/chap1_intro}
|
%\input{chapters/chap1_intro}
|
||||||
%\input{chapters/chap2_mu_e_conv}
|
%\input{chapters/chap2_mu_e_conv}
|
||||||
%\input{chapters/chap3_comet}
|
%\input{chapters/chap3_comet}
|
||||||
%\input{chapters/chap4_alcap_phys}
|
\input{chapters/chap4_alcap_phys}
|
||||||
%\input{chapters/chap5_alcap_setup}
|
\input{chapters/chap5_alcap_setup}
|
||||||
\input{chapters/chap6_analysis}
|
\input{chapters/chap6_analysis}
|
||||||
%\input{chapters/chap7_results}
|
%\input{chapters/chap7_results}
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user