Initialize a repository for writeup

This commit is contained in:
nam
2013-03-04 14:13:31 +09:00
commit 7ab02e9d87
631 changed files with 704288 additions and 0 deletions

BIN
AlCapSimulationReport/.DS_Store vendored Normal file

Binary file not shown.

View File

@@ -0,0 +1,8 @@
ALL: report.pdf
%.pdf: %.tex Makefile *.sty
#pdflatex --enable-write18 $< && pdflatex $< && pdflatex $<
pdflatex $<
clean:
rm -f *.aux *.bbl *.blg *.log poster.pdf *.nav *.out *.snm *.toc

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 324 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 205 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 324 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 968 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 843 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 MiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.0 MiB

Binary file not shown.

View File

@@ -0,0 +1,308 @@
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%%%%% LabelFig.tex FOR LABELLING FIGURE INSERTS %%%%%
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%%% AUTHORS: Raymond S\'eroul and Laurent Siebenmann
%% A18645@FRCCSC21.bitnet and lcs@matups.matups.fr
%%
%%% VERSIONS: July, October, December 1991
%%
%%% PURPOSE:
%% Occasionally, figures imported into TeX lack some labels.
%% It may then be most appropriate to use TeX to provide
%% the labels. Several macro sets, notably the
%% LaTeX picture environment, provide means to insert
%% labels. LabelFig.tex is a macro set offering
%% labelling capability for other TeX formats such
%% as Plain and AmSTeX. Unlike most graphics tools it is
%% fast and of moderate size (costing about 1 Ko of main
%% memory and 60 control sequences). Hopefully it will work
%% in essentially all TeX environments.
%%
%%% THE IDEA:
%% A grid is laid down on the figure, as in the LaTeX
%% picture environment, and the labels are then
%% located with respect to the grid.
%% There are two auxiliary devices that give this
%% macro package a touch of novelty even for LateX users.
%% (a) the grid appears on the preview/preprint.
%% For users with a fast preview this makes
%% labeling an interactive process.
%% (b) the grid is canonical, i.e. so naturally chosen
%% that labels will probably remain well placed
%% if the figure scale is changed.
%%
%%% MAIN POSTINGS : anonymous ftp
%% --- ftp 129.69.1.12 (alias
%% rusinfo.rus.uni-stuttgart.de); login: anonymous;
%% password: <anything>.
%% --- ftp 130.84.128.100 (alias rsovax.circe.fr);
%% login: anonymous; password: <anything>; directory
%% [anonymous.siebenmann]
%% --- ftp 28.146.7.200 (alias shape.mps.ohio-state.edu);
%% login: anonymous; password: <anything>;
%% directory pub/osutex
%%
%%%% DOCUMENTATION:
%% --- see LabelFig.doc
%% (may be included at end, after \endinput)
%%
%%%% EXAMPLE OF USAGE:
%% \input \LabelFig.tex
%% \SetLabels
%% (.3*.7) first label\\
%% % center of baseline of the label
%% % will go to position .3 from left
%% % and .7 from bottom
%% \L(.61*.333) $\Lambda_1\leq\Gamma$\\
%% % \L places left edge of label
%% % (rather than the center)
%% % similarly use \R for right edge;
%% % and \B for bottom, \E for equator, and \T for top
%% \T\R(.3*.7) last label \\
%% \endSetLabels
%% \ShowGrid
%% % lays grid on figure to label;
%% % delete for final printing
%% \AffixLabels{\BoxedEPSF{MyFigure}}
%% % argument of \AffixLabels#1 should be a TeX box;
%% % the grid will cover exactly that box.
%% % (Here \BoxedEPSF is the figure insertion macro
%% % of the package \BoxedEPS.tex (same sources)
%% % for inserting encapsulated PostScript graphics.
%% % But any other means of inserting
%% % the figure can be used.)
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% FORBID REREADING %%%%%
%
\ifx\LabelFigloaded\MYundefined\relax
\else
\message{ !!! LabelFig.tex ALREADY loaded !!!}
\endinput\fi
\def\LabelFigloaded{\relax}% now loaded
%%% Beyond this point we use some control sequences
%%% that are 'padlocked' with @ of category 11
\chardef\LabelFigCatAt\the\catcode`\@
\catcode`\@=11
%%temporarily suppress Plain's logging of allocations
\let\LabelFigwlog@ld\wlog
\def\wlog#1{\relax}
\ifx\\\MYundefined@
\let\\\relax
\fi
%%%%%%% end of preamble
\def\ms@g{\immediate\write16}
\def\N@wif{\csname newif\endcsname }
\def\Temp@ {\N@wif\ifIN@}
\ifx\INN@\MYundefined@
\else \let\Temp@\relax
\fi
\Temp@
%%% \IN@0#1@#2@ : Is 1st exp of #1 in 1st exp of #2 ??
%% Answer in \ifIN@
%\newif\ifIN@ %% conserve if's
\def\IN@{\expandafter\INN@\expandafter}
\long\def\INN@0#1@#2@{\long\def\NI@##1#1##2##3\ENDNI@
{\ifx\m@rker##2\IN@false\else\IN@true\fi}%
\expandafter\NI@#2@@#1\m@rker\ENDNI@}
\def\m@rker{\m@@rker}
%%% \SPLIT@0#1@#2@ : Split 1st exp of #2 at 1st exp of #1
%% \Initialtoks@ , \Terminaltoks@ will contain pieces
\newtoks\Initialtoks@ \newtoks\Terminaltoks@
\def\SPLIT@{\expandafter\SPLITT@\expandafter}
\def\SPLITT@0#1@#2@{\def\TTILPS@##1#1##2@{%
\Initialtoks@{##1}\Terminaltoks@{##2}}\expandafter\TTILPS@#2@}
%%% \Shifted@@#1#2#3 puts #3 in \hbox
%% leaves basepoint as is
%% then translates ink only by dims #1,#2
%% with Postscript convention
%% For simplicity use only on scrunched boxes
\def\Shifted@@#1#2#3{\setbox0=\hbox{#3}%
\raise -\dp0\vbox {\kern-#2%
\hbox {\kern#1\unhbox0\kern-#1}%
\kern#2}}
\newcount\gridcount
\newbox\auxGridbox@ \newbox\hGridbox@ \newbox\vGridbox@
\newbox\Labelbox@ \newbox\auxLabelbox@
\newbox\Coordinatebox@
\newtoks\Labeltoks@
\newdimen\Wdd@ \newdimen\Htt@
\def\hRule@{\advance\gridcount -2%
\vskip-.2pt\hrule\vskip-.2pt\vfil
\llap{\smash{\raise -2.5pt
\hbox{.\number\gridcount\kern2pt}}}%
\vskip-.2pt\hrule\vskip-.2pt\vfil}
\def\vRule@{\advance\gridcount 2%
\hskip-.2pt\vrule\hskip-.2pt\hfil
\setbox\auxGridbox@=\vbox to 0pt
{\vskip \Htt@\vskip 2pt
\hbox{\kern-3.5pt.\number\gridcount}\vss}%
\wd\auxGridbox@=0pt \box\auxGridbox@
\hskip-.2pt\vrule\hskip-.2pt\hfil}
\def\PlaceGrid@@{\gridcount=10%
\setbox\hGridbox@=%
\hbox{\hbox{\hskip-.4pt\vrule
\vbox to \Htt@{\offinterlineskip\parindent=\z@\relax
\vskip-.4pt\hrule\vfil
\hRule@\hRule@\hRule@\hRule@
\vskip-.2pt\hrule\vskip-.2pt\vfil
\hbox to \Wdd@{\hfil}%
\hrule\vskip-.4pt}%
\vrule\hskip-.4pt}}%
\gridcount=0%
\setbox\vGridbox@=
\hbox{\vbox{\offinterlineskip\parindent=0pt\hsize=0pt
\vskip-.4pt\hrule%
\hbox to \Wdd@{%
\hskip-.4pt\vrule\hfil
\vtop to \Htt@{\vfil}%
\vRule@\vRule@\vRule@\vRule@
\hskip-.2pt\vrule\hskip-.2pt\hfil
\vrule\hskip-.4pt}%
\hrule\vskip-.4pt}}%
%
\wd\hGridbox@=0pt\ht\hGridbox@=0pt
\wd\vGridbox@=0pt\ht\vGridbox@=0pt
%
\hbox{\box\hGridbox@\box\vGridbox@}%
}
\def\LabelsGlobal{\def\LabGl@b{\global}}
\def\LabelsLocal{\def\LabGl@b{}}
\LabelsGlobal %% default
\def\SetLabels#1\endSetLabels{%
\LabGl@b\Labeltoks@={#1()\\}%
}
\LabGl@b\Labeltoks@={()\\}
\let\PlaceGrid@\relax
\def\ShowGrid{\let\PlaceGrid@\PlaceGrid@@}
\def\bAdjust@@{%
\setbox\auxLabelbox@=\hbox{\raise \dp\auxLabelbox@
\box\auxLabelbox@}}
\def\bAdjust@{\let\vAdjust@\bAdjust@@}
\def\eAdjust@@{\dimen0=-.5\ht\auxLabelbox@
\advance\dimen0 by .5\dp\auxLabelbox@
\setbox\auxLabelbox@=
\hbox{\raise\dimen0\box\auxLabelbox@}}
\def\eAdjust@{\let\vAdjust@\eAdjust@@}
\def\tAdjust@@{%
\setbox\auxLabelbox@=\hbox{\raise-\ht\auxLabelbox@
\box\auxLabelbox@}}
\def\tAdjust@{\let\vAdjust@\tAdjust@@}
\let\vAdjust@\relax
\def\lAdjust@{\let\hAdjust@\rlap}
\def\rAdjust@{\let\hAdjust@\llap}
\let\hAdjust@\relax\let\vAdjust@\relax
\def\FetchLabel@#1(#2)#3\\{%
\IN@0#2@@\ifIN@
\setbox0=\hbox{\ignorespaces#1#3\unskip}%
\ifdim\wd0>0pt
\ms@g{}%
\ms@g{ !!! Bad label(s)? !!!}%
\message{ #1(#2)#3}%
\fi
\def\LabelMole@##1\endFetchLabel@{%
\IN@0()\\@##1@%
\ifIN@\def\Temp@{\FetchLabel@##1\endFetchLabel@}%
\else\def\Temp@{}%
\fi
\Temp@
}%
\else
\ignorespaces#1\unskip
\setbox\auxLabelbox@=%
\hbox to 0pt{\hss\ignorespaces\hAdjust@
{\ignorespaces#3\unskip}\hss}%
\vAdjust@
\let\hAdjust@\relax\let\vAdjust@\relax
\AugmentLabelBox@@{#2}%
\ht\Labelbox@=0pt\dp\Labelbox@=0pt
\let\LabelMole@\FetchLabel@%
\fi\LabelMole@}
\newtoks\XYSep@ %\XYSep@{*}
\def\SetXYSeparator#1{%
\IN@0#1@@\ifIN@\XYSep@{*}%
\else
\XYSep@{#1}%
\fi
}
\SetXYSeparator*
\def\AugmentLabelBox@@#1{%
\IN@0\the\XYSep@ @#1@\ifIN@
\SPLIT@0\the\XYSep@ @#1@%
\setbox\Labelbox@=\hbox to 0pt{%
\unhbox\Labelbox@
\Shifted@@{\the\Initialtoks@\Wdd@}%
{\the\Terminaltoks@\Htt@}%
{\box\auxLabelbox@}}%
\else
\ms@g{}%
\ms@g{ !!! Bad insertion point. !!!}%
\message{ (#1\ this point was rejected.)}%
\fi
}
\def\PlaceLabels@@{\bgroup\mathsurround=0pt%
\def\Cr@{\\}%
\let\L\lAdjust@\let\R\rAdjust@
\let\B\bAdjust@\let\E\eAdjust@\let\T\tAdjust@
\expandafter\FetchLabel@\the\Labeltoks@\endFetchLabel@
\box\Labelbox@\egroup
}%
\let \PlaceLabels@\PlaceLabels@@
\def\AffixLabels#1{\setbox\Coordinatebox@=\hbox{#1}%
\Wdd@=\wd\Coordinatebox@ \Htt@=\ht\Coordinatebox@
\advance\Htt@ \dp\Coordinatebox@
\hbox{\copy\Coordinatebox@\kern-\Wdd@
\Shifted@@{0pt}{-\dp\Coordinatebox@}%
{\PlaceGrid@\PlaceLabels@}\kern\Wdd@}%
\let\PlaceGrid@\relax
\LabGl@b\Labeltoks@{()\\}%
}
%%% Restoring
\let\wlog\LabelFigwlog@ld %%restore logging
\catcode`\@=\LabelFigCatAt %%12 or 13
\endinput
%% end of LabelFig.tex

View File

@@ -0,0 +1,315 @@
\documentclass[a4paper,11pt]{article}
\usepackage[utf8x]{inputenc}
\usepackage{ucs}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{labelfig}
\usepackage{epsf}
\usepackage{float}
\usepackage{url}
\usepackage{fancyhdr}
\usepackage{verbatim}
\usepackage{color,listings}
\usepackage{booktabs}
\usepackage{tabularx}
\usepackage{natbib}
\usepackage[all]{xy}
\usepackage{graphicx}
\usepackage{graphics}
\usepackage{multirow}
%\makeatletter
%\def\@xobeysp{}
%\makeatother
%\setlength{\textwidth}{14cm}
\author{Tran Hoai Nam}
\title{Short report on Geant4 simulation for proton measurements at PSI}
\begin{document}
\maketitle
%\tableofcontents
%\listoffigures
%\listoftables
\section{Set up}
The geometry for the simulation is shown in Figure~\ref{fig:geo}, and
parameters of each component are listed in Table~\ref{tb:para}. Each dE/dx
package consists of:
\begin{itemize}
\item one dE detector: silicon, 65 $\mu$m thick
\item one E detector: silicon, 1500 $\mu$m thick
\item charged particles veto counter: plastic scintillator, 1 mm thick
\end{itemize}
There is
a small gap of 1 mm between the detectors in each dE/dx package, and distance
from the beam counter to beam window is 5 mm. The germanium detector
I used is just a simple cylinder. I have asked Malachi (from PNNL) to
implement a more realistic geometry for it based on the detector PNNL group
has.
\begin{figure}[htpb]
\centering
\includegraphics[width=0.55\textwidth]{figs/geo_cut}\includegraphics[width=0.45\textwidth]{figs/geo_top}
\caption{Geometry used in the simulation, left: cut view, right: top view}
\label{fig:geo}
\end{figure}
\begin{table}[htb]
\centering
\caption{Parameters used in simulation}
\vskip1ex
\label{tb:para}
\begin{tabularx}{0.9\textwidth}{lll}
\toprule
Items & Material & Dimensions \\
\midrule
Vacuum chamber & Stainless steel & H = 380 mm \\
& & $\Phi$ = 310 mm \\
& & 5 mm thick wall \\
\midrule
Beam window & Mylar & 200 $\mu$m thick ($2\times 100$ $\mu$m,\\
& & not shown in fig)\\
\midrule
Muon counter & Plastic & 5$\times$5 cm$^2$ \\
and muon veto & scintillator & 0.5 mm thick \\
\midrule
dE counter & Silicon & 5$\times$5 cm$^2$ \\
& & 65 $\mu$m thick \\
\midrule
E counter & Silicon & 5$\times$5 cm$^2$ \\
& & 1500 $\mu$m thick \\
\midrule
Charged particle& Plastic & 5$\times$5 cm$^2$ \\
veto & scintillator & 1 mm thick \\
\midrule
Target & Si/Al & 5$\times$5 cm$^2$ \\
& & various thickness 50 $-$ 200 $\mu$m \\
\midrule
Ge detector & Germanium & H = 30 mm \\
& & $\Phi$ = 30 mm \\
\midrule
Lead shield & Lead & 5$\times$5 cm$^2$ \\
& & 2 mm thick \\
\bottomrule
\end{tabularx}
\end{table}
%\begin{figure}[htpb]
%\centering
%\includegraphics[width=0.6\textwidth]{figs/geo_top}
%\caption{Top view of the geometry}
%\label{fig:topview}
%\end{figure}
\section{Choosing initial muon momentum}
Initial muon momentum is varied to maximize muon stopping ratio in the target,
the muon momentum at the target, after passing through the beam counter and the
chamber window is plotted in the Figure~\ref{fig:mu_at_target}.
Other parameters of the muon beam are:
\begin{itemize}
\item muon momentum spread 2 \%
\item Gaussian spatial spread, $\sigma_x = \sigma_y = 5$ mm
\end{itemize}
\begin{figure}[!htpb]
\centering
\includegraphics[width=\textwidth]{figs/mu_at_target}
\caption{Momentum of muons at the target with different initial momentum}
\label{fig:mu_at_target}
\end{figure}
I also set the target area to be 15$\times$15 cm$^2$ to see where the muons are
scattered after the chamber window. The results are shown in
Figure~\ref{fig:mu_hit_pos_200um}.
\begin{figure}[!htpb]
\centering
\includegraphics[width=\textwidth]{figs/mu_hit_pos_200um_target}
\caption{Hit position of muons on target with different initial muon
momentum, the red box is the actual area of the $5\times5$ cm$^2$ target}
\label{fig:mu_hit_pos_200um}
\end{figure}
Muon stopping ratio for different target thicknesses are listed in the
Table~\ref{tb:stpratio}.
\begin{table}[htb]
\begin{center}
\caption{Muon stopping ratio (\%) in target when adjusting initial muon
momentum}
\label{tb:stpratio}
\vskip1ex
%\scalebox{0.75}{
\begin{tabular}{ccccc}
\toprule
& 50 $\mu$m & 100 $\mu$m & 150 $\mu$m & 200 $\mu$m \\
\midrule
30 MeV/c & 7.8 & - & - & - \\
29 MeV/c & 40.2 & 6.7 & - & - \\
28 MeV/c & 51.7 & 38.7 & 4.2 & - \\
27 MeV/c & 43.0 & 38.5 & 33.1 & 1.3 \\
26 MeV/c & 31.4 & 31.4 & 31.3 & 22.5 \\
25 MeV/c & 8.1 & 8.0 & 8.1 & 8.0 \\
\bottomrule
\end{tabular}
%}
\end{center}
\end{table}
%%%%%%%%%%%%%%%%%%%%
\section{Rate estimation}
I have run the simulation with different thickness of the target: 50, 100, 150
and 200 $\mu m$, initial momentum of muons is chosen from
Table~\ref{tb:stpratio}.
4$\times 10^6$ muons were generated in each run.
The result of rate estimation for 10$^4$ muons/sec is shown in
Table~\ref{tb:rates}. Some notes:
\begin{itemize}
\item triggered event: has hit on beam counter, AND no hit on veto counter
\item stopped muon event: triggered, AND muon actually stopped inside the
target. This is obtained by tracking the original muon, and seeing that it
really stopped inside the target.
\item hit on dE/dx package: coincidence with dE and E counters, AND no hit on
charged particle veto.
\end{itemize}
%\begin{table}[htb]
%\centering
%\caption{Rate for 10$^4$ muons/sec}
%\vskip1ex
%\label{tb:rate}
%\begin{tabular}{ccccccccc}
%\begin{tabularx}{\textwidth}{ccccccccc}
%\toprule
%Target & Triggered & Stopped &\multicolumn{3}{c}{Rate dE/dx
%1 (s$^{-1}$)}&
%\multicolumn{3}{c}{Rate dE/dx 2 (s$^{-1}$)}\\
%\cline{4-9}
%thickness & \% & \% & All &Proton&$\mu$ & All &Proton&$\mu$ \\
%\midrule
%200 $\mu m$ & 98.7 & 41.9 & 19.8&2.9 &0.2 & 126.9& 6.7 &104.7\\
%150 $\mu m$ & 96.5 & 34.9 & 17.1&2.7 &0.2 & 124.7& 7.5 &105.2\\
%100 $\mu m$ & 87.3 & 8.6 & 7.9&1.7 &0.2 & 122.8& 5.1 &114.6\\
%50 $\mu m$ & 77.7 & 0.2 & 4.5&1.0 &0.1 & 100.1& 2.9 &96.7\\
%\bottomrule
%\end{tabularx}
%\end{tabular}
%\end{table}
\begin{table}[htb]
\begin{center}
\caption{Estimated event rates for various targets of different
thickness. Incoming $10^{4}$ muons/sec and proton
emission rate of
0.15 per muon capture are assumed. The efficiency of
Si detector of 100 \% is also assumed. }
\label{tb:rates}
\vskip1ex
\scalebox{0.85}{
\begin{tabular}{ccccc}
\toprule
Target & Muon momentum &\% Stopping & Event rate (Hz) & Event rate (Hz) \\
thickness ($\mu$m)& (MeV/c) &in target & All particles
& Protons \\
\midrule
50 & 26 & 22.2 & 34.8 & 4.6 \\
100 & 27 & 32.9 & 48.5 & 5.4 \\
150 & 28 & 38.5 & 54.5 & 4.8 \\
200 & 28 & 51.2 & 47.7 & 4.5 \\
%50 & 26 & 22.2 & 14.8 & 2.3 \\
%100 & 27 & 32.9 & 18.5 & 2.1 \\
%150 & 28 & 38.5 & 16.6 & 1.7 \\
%200 & 28 & 51.2 & 19.8 & 2.0 \\
\bottomrule
\end{tabular}
}
\end{center}
\end{table}
%The reasons why stopping ratio is very small compares to trigger ratio are:
%\begin{itemize}
%\item some muons stopped inside the beam counter,
%\item and, some muons that passed the beam counter are scattered off the
%target (the distance from the beam counter to the target is 210 mm).
%\end{itemize}
%To investigate those effects, I fixed the target thickness to 200 $\mu m$, and
%varied the thickness of beam counter from 0.7 mm to 1.5 mm. Fraction of muons
%stopped in the beam counter, fraction that goes to the target are shown in
%Table~\ref{tb:stop}. Some figures on momentum of original muons, and muons that
%hit the target, and spatial distribution of muons that hit target are presented.
Note:
\begin{itemize}
\item \% get to target = $\frac{\text{number of muons hit the target}}
{\text{total number of muons generated}}$
\item \% stop in target = $\frac{\text{number of muons stopped inside target}}
{\text{number of muons hit target}}$
\item \% total stopping efficiency = $\frac{\text{number of muons stopped inside
target}}{\text{total number of muons generated}}$
\end{itemize}
%\begin{table}[htb]
%\centering
%\caption{Percentage of stopping muon}
%\vskip1ex
%\label{tb:stop}
%\begin{tabular}{ccccc}
%\toprule
%Beam counter & \% stop in & \% get to & \% stop in & \% total stopping \\
%thickness & beam counter& target & target & efficiency\\
%\midrule
%0.7 mm & 0.02 & 64 & 34 & 42 \\
%0.8 mm & 0.04 & 57 & 66 & 40 \\
%0.9 mm & 0.06 & 51 & 89 & 45 \\
%1.0 mm & 0.09 & 43 & 98 & 42 \\
%1.1 mm & 0.2 & 35 & 99.4 & 35 \\
%1.2 mm & 1.4 & 24 & 99.7 & 24 \\
%1.3 mm & 12 & 12 & 99.7 & 12 \\
%1.4 mm & 43 & 3 & 99.8 & 3 \\
%1.5 mm & 79 & 0.5 & 99.9 & 0.5 \\
%\bottomrule
%\end{tabular}
%\end{table}
%\begin{figure}[!htpb]
%\centering
%\includegraphics[width=\textwidth]{figs/mu_at_target}
%\caption{Momentum of muons when entered target at different thickness of beam
%counter}
%\label{fig:mom}
%\end{figure}
%\begin{figure}[!htpb]
%\centering
%\includegraphics[width=\textwidth]{figs/mu_at_target_all}
%\caption{Momentum of muons when entered target at different thickness of beam
%counter, in comparison with original muon momentum}
%\label{fig:mom_aio}
%\end{figure}
%\begin{figure}[!htpb]
%\centering
%\includegraphics[width=\textwidth]{figs/xy_target}
%\caption{Spatial of muon hits on target when changing beam counter thickness}
%\label{fig:xy}
%\end{figure}
\section{Side notes on structure of the output ROOT file}
I used ROOT TObject to construct the output of the simulation (as pointed out
by Malachi, this is not convenient for analysing).
An event contains following information:
\begin{itemize}
\item event id,
\item deposited energies in all detectors and target,
\item a flag to show if there is a muon stopped inside the target,
\item hits on each detectors, each hit has:
\begin{itemize}
\item type of the hit: initial muon stopped in the target, a particle
entered or exited a detector, or a new particle is spawned in
a detector
\item a detector id,
\item particle info: name, energy, hit position, time
\end{itemize}
\end{itemize}
\end{document}