prog saved
This commit is contained in:
@@ -19,7 +19,7 @@ provide veto signals for the silicon and germanium detectors. Two liquid
|
|||||||
scintillators for neutron measurements were also tested in this run.
|
scintillators for neutron measurements were also tested in this run.
|
||||||
\begin{figure}[btp]
|
\begin{figure}[btp]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.55\textwidth]{figs/alcap_setup_detailed}
|
\includegraphics[width=0.65\textwidth]{figs/alcap_setup_detailed}
|
||||||
\caption{AlCap detectors: two silicon packages inside the vacuum vessel,
|
\caption{AlCap detectors: two silicon packages inside the vacuum vessel,
|
||||||
muon beam detectors including plastic scintillators and a wire chamber,
|
muon beam detectors including plastic scintillators and a wire chamber,
|
||||||
germanium detector and veto plastic scintillators.}
|
germanium detector and veto plastic scintillators.}
|
||||||
@@ -28,22 +28,22 @@ scintillators for neutron measurements were also tested in this run.
|
|||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\subsection{Muon beam and vacuum chamber}
|
\subsection{Muon beam and vacuum chamber}
|
||||||
Muons in the $\pi$E1 beam line are decay products of pions created
|
Muons in the $\pi$E1 beam line are decay products of pions created
|
||||||
as a \SI{590}{\mega\electronvolt} proton beam hits a thick carbon target
|
as a \SI{590}{\mega\electronvolt} proton beam hits a thick carbon target. The
|
||||||
(E-target in \cref{fig:psi_exp_hall_all}). The beam line was designed to
|
beam line was designed to deliver muons with momenta ranging from
|
||||||
deliver muons with momenta ranging from
|
\SIrange{10}{500}{\mega\electronvolt\per\cc} and momentum spread from
|
||||||
\SIrange{10}{500}{\mega\electronvolt\per\cc} and
|
\SIrange{0.26}{8.0}{\percent}~\cite{Foroughli.1997}. These parameters can be
|
||||||
momentum spread from \SIrange{0.26}{8.0}{\percent}. These parameters can be
|
|
||||||
selected by changing various magnets and slits shown in
|
selected by changing various magnets and slits shown in
|
||||||
\cref{fig:psi_piE1_elements}~\cite{Foroughli.1997}.
|
\cref{fig:psi_piE1_elements}.
|
||||||
|
|
||||||
\begin{figure}[p]
|
%(E-target in \cref{fig:psi_exp_hall_all}).
|
||||||
\centering
|
%\begin{figure}[p]
|
||||||
\includegraphics[height=0.85\textheight]{figs/psi_exp_hall_all}
|
%\centering
|
||||||
\caption{Layout of the PSI experimental hall, $\pi$E1 experimental area is
|
%\includegraphics[height=0.85\textheight]{figs/psi_exp_hall_all}
|
||||||
marked with the red circle. \\Image taken from
|
%\caption{Layout of the PSI experimental hall, $\pi$E1 experimental area is
|
||||||
\url{http://www.psi.ch/num/FacilitiesEN/HallenplanPSI.png}}
|
%marked with the red circle. \\Image taken from
|
||||||
\label{fig:psi_exp_hall_all}
|
%\url{http://www.psi.ch/num/FacilitiesEN/HallenplanPSI.png}}
|
||||||
\end{figure}
|
%\label{fig:psi_exp_hall_all}
|
||||||
|
%\end{figure}
|
||||||
|
|
||||||
\begin{figure}[btp]
|
\begin{figure}[btp]
|
||||||
\centering
|
\centering
|
||||||
@@ -402,8 +402,8 @@ correlation between detectors would be established in the analysis stage.
|
|||||||
|
|
||||||
At the beginning of each block, the time counter in each digitiser is reset to
|
At the beginning of each block, the time counter in each digitiser is reset to
|
||||||
ensure time alignment across all modules. The period of 110~ms was chosen to be:
|
ensure time alignment across all modules. The period of 110~ms was chosen to be:
|
||||||
{\em i} long enough compared to the time scale of several \si{\micro\second}\
|
{\em i}) long enough compared to the time scale of several \si{\micro\second}\
|
||||||
of the physics of interest, {\em ii} short enough so that there is no timer
|
of the physics of interest, {\em ii}) short enough so that there is no timer
|
||||||
rollover on any digitiser (a FADC runs at its maximum speed of
|
rollover on any digitiser (a FADC runs at its maximum speed of
|
||||||
\SI{170}{\mega\hertz} could handle up to about \SI{1.5}{\second} with its
|
\SI{170}{\mega\hertz} could handle up to about \SI{1.5}{\second} with its
|
||||||
28-bit time counter).
|
28-bit time counter).
|
||||||
@@ -430,8 +430,8 @@ The energy calibration for the silicon detectors were done routinely during the
|
|||||||
run, by:
|
run, by:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item a \SI{79.5}{\becquerel} $^{241}\textrm{Am}$ alpha source. The most
|
\item a \SI{79.5}{\becquerel} $^{241}\textrm{Am}$ alpha source. The most
|
||||||
prominent alpha particles have energies of \SI{5.484}{\si{\MeV}} (85.2\%)
|
prominent alpha particles have energies of \SI{5.484}{\MeV} (85.2\%)
|
||||||
and \SI{5.442}{\si{\MeV}} (12.5\%). The alpha particles from the source
|
and \SI{5.442}{\MeV} (12.5\%). The alpha particles from the source
|
||||||
would lose about \SI{66}{\kilo\eV} in the \SI{0.5}{\um}-thick dead layer,
|
would lose about \SI{66}{\kilo\eV} in the \SI{0.5}{\um}-thick dead layer,
|
||||||
and the peak would appear at \SI{5418}{\kilo\eV} (\cref{fig:toyMC_alpha});
|
and the peak would appear at \SI{5418}{\kilo\eV} (\cref{fig:toyMC_alpha});
|
||||||
|
|
||||||
@@ -753,12 +753,12 @@ sets are shown in \cref{tb:stat}.
|
|||||||
Al 100 \si{\micro\meter}& 1.09& 14.37&$2.94 \times 10^8$\\
|
Al 100 \si{\micro\meter}& 1.09& 14.37&$2.94 \times 10^8$\\
|
||||||
& 1.07& 2.56& $4.99 \times 10^7$\\
|
& 1.07& 2.56& $4.99 \times 10^7$\\
|
||||||
\midrule
|
\midrule
|
||||||
Al 50 \si{\micro\meter} m & 1.07& 51.94& $8.81 \times 10^8$\\
|
Al 50 \si{\micro\meter} & 1.07& 51.94& $8.81 \times 10^8$\\
|
||||||
\bottomrule
|
\bottomrule
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
\end{center}
|
\end{center}
|
||||||
\caption{Run statistics. Momentum scaling
|
\caption{Run statistics. Momentum scaling factors are normalised to
|
||||||
normalized to 28 MeV/c.}
|
\SI{28}{\MeV\per\cc}.}
|
||||||
\label{tb:stat}
|
\label{tb:stat}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
@@ -913,12 +913,126 @@ example, the X-ray spectrum analysis was done to confirm that we could observe
|
|||||||
the muon capture process and to help in choosing optimal momenta which
|
the muon capture process and to help in choosing optimal momenta which
|
||||||
maximised the number of stopped muons.
|
maximised the number of stopped muons.
|
||||||
|
|
||||||
Although the offline analyser is still not fully developed yet, several modules
|
Although the offline analyser is still not fully available yet, several modules
|
||||||
are ready. They are described in detailed in the next chapter.
|
are ready(\cref{tab:offline_modules}). An initial analysis is possible using
|
||||||
|
the existing modules thanks to the modularity of the analysis framework.
|
||||||
|
|
||||||
|
\begin{table}[htb]
|
||||||
|
\begin{center}
|
||||||
|
\begin{tabular}{l p{8cm}}
|
||||||
|
\toprule
|
||||||
|
\textbf{Module name} & \textbf{Functions}\\
|
||||||
|
\midrule
|
||||||
|
MakeAnalysedPulses & make a pulse with parameters extracted from
|
||||||
|
a waveform\\
|
||||||
|
MaxBinAPGenerator & simplest algorithm to get pulse information\\
|
||||||
|
TSimpleMuonEvent & sort pulses occur in a fixed time window around the
|
||||||
|
muon hits\\
|
||||||
|
ExportPulse \& PulseViewer & plot waveforms for diagnostics\\
|
||||||
|
PlotAmplitude & plot pulse height spectra\\
|
||||||
|
PlotAmpVsTdiff & plot pulse correlations in timing and amplitude\\
|
||||||
|
EvdE & plot \sdEdx histograms\\
|
||||||
|
\bottomrule
|
||||||
|
\end{tabular}
|
||||||
|
\end{center}
|
||||||
|
\caption{Available offline analysis modules.}
|
||||||
|
\label{tab:offline_modules}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
The MakeAnalysedPulses module takes a raw waveform, calculates the pedestal
|
||||||
|
from a predefined number of first samples, subtracts this pedestal taking
|
||||||
|
pulse polarity into account, then calls another module to extract pulse
|
||||||
|
parameters. At the moment, the simplest module, so-called MaxBinAPGenerator,
|
||||||
|
for pulse information calculation is in use. The module looks for the
|
||||||
|
sample that has the maximal deviation from the baseline, takes the deviation as
|
||||||
|
pulse amplitude and the time stamp of the sample as pulse time. The procedure
|
||||||
|
is illustrated on \cref{fig:tap_maxbin_algo}. This module could not handle
|
||||||
|
pile-up or double pulses in one \tpulseisland{} in \cref{fig:tap_maxbin_bad}.
|
||||||
|
\begin{figure}[htb]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.85\textwidth]{figs/tap_maxbin_algo}
|
||||||
|
\caption{Pulse parameters extraction with MaxBinAPGenerator.}
|
||||||
|
\label{fig:tap_maxbin_algo}
|
||||||
|
\end{figure}
|
||||||
|
\begin{figure}[htb]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.47\textwidth]{figs/tap_maxbin_bad}
|
||||||
|
\includegraphics[width=0.47\textwidth]{figs/tap_maxbin_bad2}
|
||||||
|
\caption{Double pulse and pile up are taken as one single pulse by the
|
||||||
|
MaxBinAPGenerator}
|
||||||
|
\label{fig:tap_maxbin_bad}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
The TSimpleMuonEvent first picks a muon candidate, then loops through all
|
||||||
|
pulses on all detector channels, and picks all pulses occur in
|
||||||
|
a time window of \SI{\pm 10}{\si{\us}} around each candidate to build
|
||||||
|
a muon event. A muon candidates is a hit on the upstream plastic scintillator
|
||||||
|
with an amplitude higher than a threshold which was chosen to reject MIPs. The
|
||||||
|
period of \SI{10}{\si{\us}} is long enough compared to the mean life time of
|
||||||
|
muons in the target materials
|
||||||
|
(\SI{0.758}{\si{\us}} for silicon, and \SI{0.864}{\si{\us}}
|
||||||
|
for aluminium~\cite{SuzukiMeasday.etal.1987}) so practically all of emitted
|
||||||
|
charged particles would be recorded in this time window.
|
||||||
|
%\begin{figure}[htb]
|
||||||
|
%\centering
|
||||||
|
%\includegraphics[width=0.85\textwidth]{figs/tme_musc_threshold}
|
||||||
|
%\caption{Pulse height spectrum of the $\mu$Sc scintillator}
|
||||||
|
%\label{fig:tme_musc_threshold}
|
||||||
|
%\end{figure}
|
||||||
|
|
||||||
|
A pile-up protection mechanism is employed to reject multiple muons events: if
|
||||||
|
there exists another muon hit in less than \SI{15}{\us} from the
|
||||||
|
candidate then both the candidate and the other muon are discarded. This
|
||||||
|
pile-up protection would cut out less than 11\% total number of events because
|
||||||
|
the beam rate was generally less than \SI{8}{\kilo\hertz}.
|
||||||
|
|
||||||
|
%In runs with active silicon targets, another requirement is applied for the
|
||||||
|
%candidate: a prompt hit on the target in $\pm 200$ \si{\ns}\ around the
|
||||||
|
%time of the $\mu$Sc pulse. The number comes from the observation of the
|
||||||
|
%time correlation between hits on the target and the $\mu$Sc
|
||||||
|
%(\cref{fig:tme_sir_prompt_rational}).
|
||||||
|
%\begin{figure}[htb]
|
||||||
|
%\centering
|
||||||
|
%\includegraphics[width=0.85\textwidth]{figs/tme_sir_prompt_rational}
|
||||||
|
%\caption{Correlation in time between SiR2 hit and muon hit}
|
||||||
|
%\label{fig:tme_sir_prompt_rational}
|
||||||
|
%\end{figure}
|
||||||
|
|
||||||
|
To make sure that we will analyse good data, a low level data quality checking
|
||||||
|
was done on the whole data sets. The idea is plotting the variations of basic
|
||||||
|
parameters, such as noise level, length of raw waveforms, pulse rate, time
|
||||||
|
correlation to hits on the muon counter on each channel during the data
|
||||||
|
collecting period. Runs with significant difference from the averaging
|
||||||
|
values were further checked for possible causes, and would be discarded if such
|
||||||
|
discrepancy was too large or unaccounted for. Examples of such trend plots are
|
||||||
|
shown in \cref{fig:lldq}.
|
||||||
|
\begin{figure}[htb]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.47\textwidth]{figs/lldq_noise}
|
||||||
|
\includegraphics[width=0.47\textwidth]{figs/lldq_tdiff}
|
||||||
|
\caption{Example trend plots used in the low level data quality checking:
|
||||||
|
noise level in FWHM (left) and time correlation with muon hits (right). The
|
||||||
|
noise level was basically stable in in this data set, except for one
|
||||||
|
channel. On the right hand side, this sanity check helped find out the
|
||||||
|
sampling frequency was wrongly applied in the first tranche of the data
|
||||||
|
set.}
|
||||||
|
\label{fig:lldq}
|
||||||
|
\end{figure}
|
||||||
% subsection offline_analyser (end)
|
% subsection offline_analyser (end)
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
% section analysis_strategy (end)
|
\section{Monte Carlo simulation}
|
||||||
|
\label{sec:monte_carlo_simulation}
|
||||||
|
|
||||||
|
A full Monte Carlo (MC) simulation of the experimental set up has been developed
|
||||||
|
based on Geant4~\cite{Agostinelli.etal.2003}. The geometrical implementation
|
||||||
|
was as detailed as possible and could be modified via configuration script at
|
||||||
|
run time. Descriptions of the muon beam came from the beam line optic
|
||||||
|
calculation provided by the accelerator experts at PSI.
|
||||||
|
|
||||||
|
The MC model greatly assisted the design of the experiment, such as alignment
|
||||||
|
of the detectors with respect to the target, and shielding of scattered muons.
|
||||||
|
It also helps make sense of observed results during the run and data
|
||||||
|
analysing.
|
||||||
|
|
||||||
% chapter the_alcap_run_2013 (end)
|
% chapter the_alcap_run_2013 (end)
|
||||||
|
|
||||||
|
|||||||
@@ -1,116 +1,14 @@
|
|||||||
\chapter{Data analysis}
|
\chapter{Data analysis}
|
||||||
\label{cha:data_analysis}
|
\label{cha:data_analysis}
|
||||||
|
This chapter presents initial analysis on subsets of the collected data.
|
||||||
\section{Analysis modules}
|
Purposes of the analysis include:
|
||||||
\label{sec:analysis_modules}
|
\begin{itemize}
|
||||||
A full analysis has not been completed yet, but initial analysis
|
\item testing the analysis chain;
|
||||||
based on the existing modules (\cref{tab:offline_modules}) is possible
|
\item verification of the experimental method, specifically the
|
||||||
thanks to the modularity of the analysis framework.
|
normalisation of number of stopped muons, and particle identification
|
||||||
|
using specific energy loss;
|
||||||
\begin{table}[htb]
|
\item extracting a preliminary rate of proton emission from aluminium.
|
||||||
\begin{center}
|
\end{itemize}
|
||||||
\begin{tabular}{l p{8cm}}
|
|
||||||
\toprule
|
|
||||||
\textbf{Module name} & \textbf{Functions}\\
|
|
||||||
\midrule
|
|
||||||
MakeAnalysedPulses & make a pulse with parameters extracted from
|
|
||||||
a waveform\\
|
|
||||||
MaxBinAPGenerator & simplest algorithm to get pulse information\\
|
|
||||||
TSimpleMuonEvent & sort pulses occur in a fixed time window around the
|
|
||||||
muon hits\\
|
|
||||||
ExportPulse \& PulseViewer & plot waveforms for diagnostics\\
|
|
||||||
PlotAmplitude & plot pulse height spectra\\
|
|
||||||
PlotAmpVsTdiff & plot pulse correlations in timing and amplitude\\
|
|
||||||
EvdE & identify charged particles using dE/dx\\
|
|
||||||
\bottomrule
|
|
||||||
\end{tabular}
|
|
||||||
\end{center}
|
|
||||||
\caption{Available offline analysis modules.}
|
|
||||||
\label{tab:offline_modules}
|
|
||||||
\end{table}
|
|
||||||
|
|
||||||
The MakeAnalysedPulses module takes a raw waveform, calculates the pedestal
|
|
||||||
from a predefined number of first samples, subtracts this pedestal taking
|
|
||||||
pulse polarity into account, then calls another module to extract pulse
|
|
||||||
parameters. At the moment, the simplest module, so-called MaxBinAPGenerator,
|
|
||||||
for pulse information calculation is in use. The module looks for the
|
|
||||||
sample that
|
|
||||||
has the maximal deviation from the baseline, takes the deviation as pulse
|
|
||||||
amplitude and the time stamp of the sample as pulse time. The procedure is
|
|
||||||
illustrated on \cref{fig:tap_maxbin_algo}. This module could not account for
|
|
||||||
pile-up or double pulses in one \tpulseisland{} in \cref{fig:tap_maxbin_bad}.
|
|
||||||
\begin{figure}[htb]
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=0.85\textwidth]{figs/tap_maxbin_algo}
|
|
||||||
\caption{Pulse parameters extraction with MaxBinAPGenerator.}
|
|
||||||
\label{fig:tap_maxbin_algo}
|
|
||||||
\end{figure}
|
|
||||||
\begin{figure}[htb]
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=0.47\textwidth]{figs/tap_maxbin_bad}
|
|
||||||
\includegraphics[width=0.47\textwidth]{figs/tap_maxbin_bad2}
|
|
||||||
\caption{Double pulse and pile up are taken as one single pulse by the
|
|
||||||
MaxBinAPGenerator}
|
|
||||||
\label{fig:tap_maxbin_bad}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
The TSimpleMuonEvent first picks a muon candidate, then loops through all
|
|
||||||
pulses on all detector channels, and picks all pulses occur in
|
|
||||||
a time window of \SI{\pm 10}{\si{\us}} around each candidate to build
|
|
||||||
a muon event. A muon candidates is a hit on the upstream plastic scintillator
|
|
||||||
with an amplitude higher than a threshold which was chosen to reject MIPs. The
|
|
||||||
period of \SI{10}{\si{\us}} is long enough compared to the mean life time of
|
|
||||||
muons in the target materials
|
|
||||||
(\SI{0.758}{\si{\us}} for silicon, and \SI{0.864}{\si{\us}}
|
|
||||||
for aluminium~\cite{SuzukiMeasday.etal.1987}) so practically all of emitted
|
|
||||||
charged particles would be recorded in this time window.
|
|
||||||
%\begin{figure}[htb]
|
|
||||||
%\centering
|
|
||||||
%\includegraphics[width=0.85\textwidth]{figs/tme_musc_threshold}
|
|
||||||
%\caption{Pulse height spectrum of the $\mu$Sc scintillator}
|
|
||||||
%\label{fig:tme_musc_threshold}
|
|
||||||
%\end{figure}
|
|
||||||
|
|
||||||
A pile-up protection mechanism is employed to reject multiple muons events: if
|
|
||||||
there exists another muon hit in less than \SI{15}{\si{\us}} from the
|
|
||||||
candidate then both the candidate and the other muon are discarded. This
|
|
||||||
pile-up protection would cut out less than 11\% total number of events because
|
|
||||||
the beam rate was generally less than \SI{8}{\kilo\hertz}.
|
|
||||||
|
|
||||||
%In runs with active silicon targets, another requirement is applied for the
|
|
||||||
%candidate: a prompt hit on the target in $\pm 200$ \si{\ns}\ around the
|
|
||||||
%time of the $\mu$Sc pulse. The number comes from the observation of the
|
|
||||||
%time correlation between hits on the target and the $\mu$Sc
|
|
||||||
%(\cref{fig:tme_sir_prompt_rational}).
|
|
||||||
%\begin{figure}[htb]
|
|
||||||
%\centering
|
|
||||||
%\includegraphics[width=0.85\textwidth]{figs/tme_sir_prompt_rational}
|
|
||||||
%\caption{Correlation in time between SiR2 hit and muon hit}
|
|
||||||
%\label{fig:tme_sir_prompt_rational}
|
|
||||||
%\end{figure}
|
|
||||||
|
|
||||||
To make sure that we will analyse good data, a low level data quality checking
|
|
||||||
was done on the whole data sets. The idea is plotting the variations of basic
|
|
||||||
parameters, such as noise level, length of raw waveforms, pulse rate, time
|
|
||||||
correlation to hits on the muon counter on each channel during the data
|
|
||||||
collecting period. Runs with significant difference from the averaging
|
|
||||||
values were further checked for possible causes, and would be discarded if such
|
|
||||||
discrepancy was too large or unaccounted for. Examples of such trend plots are
|
|
||||||
shown in \cref{fig:lldq}.
|
|
||||||
\begin{figure}[htb]
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=0.47\textwidth]{figs/lldq_noise}
|
|
||||||
\includegraphics[width=0.47\textwidth]{figs/lldq_tdiff}
|
|
||||||
\caption{Example trend plots used in the low level data quality checking:
|
|
||||||
noise level in FWHM (left) and time correlation with muon hits (right). The
|
|
||||||
noise level was basically stable in in this data set, except for one
|
|
||||||
channel. On the right hand side, this sanity check helped find out the
|
|
||||||
sampling frequency was wrongly applied in the first tranche of the data
|
|
||||||
set.}
|
|
||||||
\label{fig:lldq}
|
|
||||||
\end{figure}
|
|
||||||
% section analysis_modules (end)
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
\section{Charged particles following muon capture on a thick silicon target}
|
\section{Charged particles following muon capture on a thick silicon target}
|
||||||
\label{sec:charged_particles_from_muon_capture_on_silicon_thick_silicon}
|
\label{sec:charged_particles_from_muon_capture_on_silicon_thick_silicon}
|
||||||
This analysis was done on a subset of the active target runs
|
This analysis was done on a subset of the active target runs
|
||||||
|
|||||||
@@ -112,6 +112,23 @@
|
|||||||
Timestamp = {2014-04-09}
|
Timestamp = {2014-04-09}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Article{Agostinelli.etal.2003,
|
||||||
|
Title = {{GEANT4: A Simulation toolkit}},
|
||||||
|
Author = {Agostinelli, S. and others},
|
||||||
|
Journal = {Nucl.Instrum.Meth.},
|
||||||
|
Year = {2003},
|
||||||
|
Pages = {250-303},
|
||||||
|
Volume = {A506},
|
||||||
|
|
||||||
|
__markedentry = {[NT:6]},
|
||||||
|
Collaboration = {GEANT4},
|
||||||
|
Doi = {10.1016/S0168-9002(03)01368-8},
|
||||||
|
Owner = {NT},
|
||||||
|
Reportnumber = {SLAC-PUB-9350, FERMILAB-PUB-03-339},
|
||||||
|
Slaccitation = {%%CITATION = NUIMA,A506,250;%%},
|
||||||
|
Timestamp = {2014-10-11}
|
||||||
|
}
|
||||||
|
|
||||||
@Article{AhmadAzuelos.etal.1988,
|
@Article{AhmadAzuelos.etal.1988,
|
||||||
Title = {Search for muon-electron and muon-positron conversion},
|
Title = {Search for muon-electron and muon-positron conversion},
|
||||||
Author = {Ahmad, S and Azuelos, G and Blecher, M and Bryman, DA and Burnham, RA and Clifford, ETH and Depommier, P and Dixit, MS and Gotow, K and Hargrove, CK and others},
|
Author = {Ahmad, S and Azuelos, G and Blecher, M and Bryman, DA and Burnham, RA and Clifford, ETH and Depommier, P and Dixit, MS and Gotow, K and Hargrove, CK and others},
|
||||||
@@ -471,7 +488,7 @@
|
|||||||
Pages = {154--197},
|
Pages = {154--197},
|
||||||
Volume = {562},
|
Volume = {562},
|
||||||
|
|
||||||
__markedentry = {[NT:6]},
|
__markedentry = {[NT:]},
|
||||||
Doi = {10.1016/j.nima.2006.03.009},
|
Doi = {10.1016/j.nima.2006.03.009},
|
||||||
File = {Published version:Bichsel.2006.pdf:PDF},
|
File = {Published version:Bichsel.2006.pdf:PDF},
|
||||||
Owner = {NT},
|
Owner = {NT},
|
||||||
@@ -1065,6 +1082,7 @@
|
|||||||
Month = {Aug},
|
Month = {Aug},
|
||||||
Pages = {741--757},
|
Pages = {741--757},
|
||||||
Volume = {36},
|
Volume = {36},
|
||||||
|
|
||||||
Doi = {10.1103/PhysRevC.36.741},
|
Doi = {10.1103/PhysRevC.36.741},
|
||||||
File = {Published version:GadioliGadioli.1987.pdf:PDF},
|
File = {Published version:GadioliGadioli.1987.pdf:PDF},
|
||||||
Issue = {2},
|
Issue = {2},
|
||||||
@@ -1872,7 +1890,7 @@
|
|||||||
@Article{MeasdayStocki.etal.2007,
|
@Article{MeasdayStocki.etal.2007,
|
||||||
Title = {$\gamma$ rays from muon capture in Al 27 and natural Si},
|
Title = {$\gamma$ rays from muon capture in Al 27 and natural Si},
|
||||||
Author = {Measday, David F and Stocki, Trevor J and Moftah, Belal A and Tam, Heywood},
|
Author = {Measday, David F and Stocki, Trevor J and Moftah, Belal A and Tam, Heywood},
|
||||||
Journal = {Physical Review C},
|
Journal = {Phys. Rev. C},
|
||||||
Year = {2007},
|
Year = {2007},
|
||||||
Number = {3},
|
Number = {3},
|
||||||
Pages = {035504},
|
Pages = {035504},
|
||||||
@@ -2299,6 +2317,7 @@
|
|||||||
Month = {Jan},
|
Month = {Jan},
|
||||||
Pages = {135--141},
|
Pages = {135--141},
|
||||||
Volume = {19},
|
Volume = {19},
|
||||||
|
|
||||||
Doi = {10.1103/PhysRevC.19.135},
|
Doi = {10.1103/PhysRevC.19.135},
|
||||||
File = {Published version:SchlepuetzComiso.etal.1979.pdf:PDF},
|
File = {Published version:SchlepuetzComiso.etal.1979.pdf:PDF},
|
||||||
Issue = {1},
|
Issue = {1},
|
||||||
@@ -2484,8 +2503,6 @@
|
|||||||
Year = {2003},
|
Year = {2003},
|
||||||
Pages = {MOLT007},
|
Pages = {MOLT007},
|
||||||
Volume = {C0303241},
|
Volume = {C0303241},
|
||||||
|
|
||||||
__markedentry = {[NT:]},
|
|
||||||
Archiveprefix = {arXiv},
|
Archiveprefix = {arXiv},
|
||||||
Eprint = {physics/0306116},
|
Eprint = {physics/0306116},
|
||||||
File = {arXiv v1:VerkerkeKirkby.2003-eprintv1.pdf:PDF},
|
File = {arXiv v1:VerkerkeKirkby.2003-eprintv1.pdf:PDF},
|
||||||
|
|||||||
Reference in New Issue
Block a user