first draft r15a xray
This commit is contained in:
@@ -1,2 +1,146 @@
|
||||
\section{Data analysis}
|
||||
\subsection{Digital pulse processing}
|
||||
\label{sub:digital_pulse_processing}
|
||||
Since we recorded all detector outputs using digitizers, offline digital pulse
|
||||
processing is needed to extract energy and timing information. Typical output
|
||||
pulses from HPGe and \ce{LaBr3} detectors are shown in
|
||||
\cref{fig:typical_pulses}.
|
||||
|
||||
\begin{center}
|
||||
\begin{figure}[tbp]
|
||||
\centering
|
||||
\includegraphics[width=1.0\textwidth]{figs/typical_pulses}
|
||||
\caption{Typical output pulses of HPGe and \ce{LaBr3} detectors: energy
|
||||
output HPGe high gain (top left), energy output HPGe low gain (top
|
||||
right), timing output HPGe (bottom left), and \ce{LaBr3} (bottom right).
|
||||
Each clock tick corresponds to \SI{10}{\ns} and \SI{2}{\ns} for top and
|
||||
bottom plots, respectively.}
|
||||
\label{fig:typical_pulses}
|
||||
\end{figure}
|
||||
\end{center}
|
||||
|
||||
The timing pulses from the HPGe detector were not used in this analysis because
|
||||
they are too long and noisy (see bottom left \cref{fig:typical_pulses}).
|
||||
Energy of the HPGe detector is taken as amplitude of spectroscopy amplifier
|
||||
outputs, its timing is determined by the clock tick where the trace passes
|
||||
\SI{30}{\percent} of the amplitude. The timing resolution is \SI{235}{\ns}
|
||||
using this method.
|
||||
|
||||
\subsection{Calibrations}
|
||||
\label{sub:calibrations}
|
||||
The HPGe detector energy scales and acceptance were calibrated
|
||||
using \ce{^{152}Eu}, \ce{^{60}Co}, \ce{^{88}Y} sources placed at the target
|
||||
position. There was a separate run for background radiation.
|
||||
|
||||
Energy resolutions are better than \SI{3.2}{\keV} for all calibrated peaks.
|
||||
\begin{center}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=1.0\textwidth]{figs/hpge_ecal}
|
||||
\caption{Energy calibration spectra for the HPGe detector.}
|
||||
\label{fig:hpge_ecal}
|
||||
\end{figure}
|
||||
\end{center}
|
||||
|
||||
The detector acceptance above \SI{200}{\kilo\eV} were fitted using an empirical
|
||||
function:
|
||||
\begin{equation}
|
||||
A = c_1 \times E ^ {c_2},
|
||||
\end{equation}
|
||||
where $c_1 = 0.1631$, $c_2 = -0.9257$, and $E$ is photon energy in \si{\keV}.
|
||||
Interpolation gives detector acceptance at the peaks of interest as shown in
|
||||
\cref{tab:hpge_acceptance}.
|
||||
|
||||
\begin{center}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[width=1.0\textwidth]{figs/hpge_higain_acceptance}
|
||||
\caption{Acceptance of the HPGe as a function of photon energy.}
|
||||
\label{fig:hpge_higain_acceptance}
|
||||
\end{figure}
|
||||
\end{center}
|
||||
|
||||
\begin{table}[tbp]
|
||||
\centering
|
||||
\caption{HPGe acceptance for photons of interest}
|
||||
\label{tab:hpge_acceptance}
|
||||
\begin{tabular}{@{}cccc@{}}
|
||||
\toprule
|
||||
\multicolumn{2}{c}{\textbf{\begin{tabular}[c]{@{}c@{}}Photon energy\\ {[}keV{]}\end{tabular}}} & \textbf{Acceptance} & \textbf{Error} \\
|
||||
\midrule
|
||||
$2p-1s$ & 346.8 & \num{8.75E-4} &\num{4.0e-5} \\
|
||||
\ce{^{27}Mg} & 843.7 & \num{3.40E-4} &\num{0.9e-5} \\
|
||||
% & 1014.4 & \num{2.69e-4} &\num{1.07e-5} \\
|
||||
\ce{^{nat}Ti} & 931.96 & \num{3.06E-4} &\num{0.8e-5} \\
|
||||
\ce{^{26}Mg}* & 1088.7 & \num{1.51e-4} &\num{0.7e-5} \\
|
||||
% 0 346.828 0.000875 0.000040
|
||||
% 1 399.268 0.000753 0.000030
|
||||
% 2 400.177 0.000751 0.000030
|
||||
% 3 476.800 0.000624 0.000022
|
||||
% 4 843.740 0.000340 0.000009
|
||||
% 5 930.000 0.000306 0.000008
|
||||
% 6 931.000 0.000306 0.000008
|
||||
% 7 932.000 0.000306 0.000008
|
||||
% 8 1014.420 0.000279 0.000008
|
||||
% 9 1808.660 0.000151 0.000007
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
\subsection{Number of stopped muons}
|
||||
% TODO: justification for taking just number from muon counter
|
||||
|
||||
The number of stopped muons are taken as number of muons seen by the muon
|
||||
counter, since we used thick targets the muon beam is believed to stop
|
||||
completely at the middle of the targets. This assumption is verified for the
|
||||
aluminum target where count from muon counter was consistent with number of
|
||||
stopped muons calculated from number of $(2p-1s)$ X-rays.
|
||||
|
||||
\subsection{Muonic X-ray spectra}
|
||||
We use the HPGe spectra to look for characteristic muonic X-rays from elements
|
||||
of interest. Energies of these muonic X-rays are listed
|
||||
in~\cref{tab:hpge_acceptance}.
|
||||
|
||||
\subsubsection{Titanium}
|
||||
We are looking at X-rays from $(2p-1s)$ transitions in titanium. Natural
|
||||
titanium has 5 stable isotopes: \ce{^{46}Ti}, \ce{^{47}Ti}, \ce{^{48}Ti},
|
||||
\ce{^{49}Ti}, and \ce{^{50}Ti}, with the \ce{^{48}Ti} being the
|
||||
most abundant at 73.72\%. The fine splitting between muonic $2p_{3/2}
|
||||
$ and $2p_{1/2}$ levels in these stable isotopes are about
|
||||
\SI{2}{keV}~\cite{Wohlfahrt1981}, comparable to the resolution of our HPGe
|
||||
detector. The $(2p-1s)$ X-rays therefore show up as a broad, asymmetric peak
|
||||
with a longer tail on the low energy side. The peak is fitted as two
|
||||
Gaussian peaks on top of a first-order polynomial.
|
||||
|
||||
\subsection{Fraction of muon captured by a nucleus}
|
||||
An atomic captured muon at the 1S state has only two choices, either to decay
|
||||
in orbit or to be captured on the nucleus. The total disappearance rate for
|
||||
negative muon, $\Lambda_{tot}$, is given by:
|
||||
\begin{equation}
|
||||
\Lambda_{tot} = \Lambda_{cap} + Q \Lambda_{free},
|
||||
\label{eq:mu_total_capture_rate}
|
||||
\end{equation}
|
||||
where $\Lambda_{cap}$ and $\Lambda_{free}$ are nuclear capture rate and free
|
||||
decay rate, respectively, and $Q$ is the Huff factor, which is corrects for the
|
||||
fact that muon decay rate in a bound state is reduced because of the binding
|
||||
energy reduces the available energy.
|
||||
|
||||
Using mean lifetime measured by Suzuki et.al.~\cite{SuzukiMeasday.etal.1987}
|
||||
and fractions of muons captured by element of interest are calculated and
|
||||
listed in~\cref{tab:capture_frac}.
|
||||
\begin{table}[tbp]
|
||||
\centering
|
||||
\caption{Nuclear capture probability calculated from mean lifetimes taken
|
||||
from measurements of Suzuki et.al.~\cite{SuzukiMeasday.etal.1987}}
|
||||
\label{tab:capture_frac}
|
||||
\begin{tabular}{cccc}
|
||||
\toprule
|
||||
Element & Mean lifetime & Huff factor & Nuclear capture\\
|
||||
& [\si{ns}] & & probability [\%]\\
|
||||
\midrule
|
||||
\ce{^{nat}Al} & \num{864.0 \pm 1.0} & \num{0.993} &\num{60.95(5)} \\
|
||||
\ce{^{nat}Ti} & \num{329.3 \pm 1.3} & \num{0.981} &\num{85.29(6)} \\
|
||||
\ce{^{nat}W} & \num{78.4 \pm 1.5} & \num{0.860} &\num{96.93(6)} \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
@@ -1,2 +1,11 @@
|
||||
\section{Introduction}
|
||||
Why are we even doing this measurement? Here is a very thorough study~\cite{Zinatulina2019}
|
||||
Why are we even doing this measurement?
|
||||
\begin{itemize}
|
||||
\item targets for mu-e conversion experiments
|
||||
\item why did we measure \ce{W}, \ce{H_2O}, \ldots: background for Xrays of
|
||||
interest in Mu2e
|
||||
\item existing data? focused on nuclear charge radii, did not report muonic
|
||||
X-ray yields. This is true for \ce{^{nat}Ti}~\cite{Wohlfahrt1981}
|
||||
|
||||
\end{itemize}
|
||||
|
||||
|
||||
@@ -1,2 +1,28 @@
|
||||
\section{Results and discussions}
|
||||
\subsection{Titanium}
|
||||
Number of stopped muons in the natural titanium target was:
|
||||
\begin{equation}
|
||||
N_{\mu} = (88296 \pm 9) \times 10^3 \,.
|
||||
\label{eqn:Nmu_Ti_Tsc}
|
||||
\end{equation}
|
||||
|
||||
Fitting the peak around \SI{931}{keV} in the photon spectrum gives the
|
||||
center of gravity at \SI{931.6 \pm 0.7}{keV} (see~\cref{fig:ti_931keV_fit}),
|
||||
consistent with previously reported value~\cite{Wohlfahrt1981}.
|
||||
Number of $(2p-1s)$ X-rays in the \SI{931.6}{keV} peak is:
|
||||
\begin{equation}
|
||||
N_{931.6} = (20750 \pm 764) \,.
|
||||
\end{equation}
|
||||
|
||||
\begin{figure}[tbp]
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{figs/ti_931keV_fit}
|
||||
\caption{Fitting $(2p-1s)$ peaks}
|
||||
\label{fig:ti_931keV_fit}
|
||||
\end{figure}
|
||||
|
||||
The emission rate of the $(2p-1s)$ muonic X-rays is calculated as:
|
||||
\begin{equation}
|
||||
R_{Ti} = \frac{N_{931.6}}{A_{931.6} \times N_{\mu} \times f_{capTi}} = 0.90
|
||||
\pm 0.04 \,.
|
||||
\end{equation}
|
||||
|
||||
@@ -5,14 +5,14 @@ The 2015 summer run focused on the detection of neutral particles: low energy
|
||||
X-ray, gamma ray and neutron emission after the muon is captured by the
|
||||
nucleus.
|
||||
|
||||
The X-rays and gamma rays of interest are:
|
||||
\begin{itemize}
|
||||
\item muonic $2p-1s$ transition in aluminum: \SI{346.8}{\kilo\eV}
|
||||
\item \SI{843.7}{\kilo\eV} gamma from the $\beta^-$ decay of \ce{^{27}Mg}
|
||||
(half-life: \SI{9.46}{\min})
|
||||
\item \SI{1808.7}{\kilo\eV} gamma from the first excited state of
|
||||
\ce{^{26}Mg}
|
||||
\end{itemize}
|
||||
% The X-rays and gamma rays of interest are:
|
||||
% \begin{itemize}
|
||||
% \item muonic $2p-1s$ transition in aluminum: \SI{346.8}{\kilo\eV}
|
||||
% \item \SI{843.7}{\kilo\eV} gamma from the $\beta^-$ decay of \ce{^{27}Mg}
|
||||
% (half-life: \SI{9.46}{\min})
|
||||
% \item \SI{1808.7}{\kilo\eV} gamma from the first excited state of
|
||||
% \ce{^{26}Mg}
|
||||
% \end{itemize}
|
||||
|
||||
Low momentum muons (less than \SI[]{40}{\mega\eVperc}) were stopped in
|
||||
a target after passing a muon counter
|
||||
@@ -58,11 +58,16 @@ Experimental layout is shown in \cref{fig:R2015a_setup}.
|
||||
\begin{center}
|
||||
\begin{figure}[tbp]
|
||||
\centering
|
||||
\includegraphics[width=0.70\textwidth]{figs/r15a_setup_photo}
|
||||
\caption{Layout of the AlCap 2015 summer run. Muons entered from the top of
|
||||
the image. The LYSO detector is not visible in this image, which is
|
||||
located further out in the bottom of the image.}
|
||||
\label{fig:R2015a_setup}
|
||||
\begin{minipage}{0.45\textwidth}
|
||||
\includegraphics[width=1.0\textwidth]{figs/r15a_setup_photo}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.45\textwidth}
|
||||
\includegraphics[width=1.0\textwidth]{figs/alcap_r15a_setup}
|
||||
\end{minipage}
|
||||
\caption{Layout of the AlCap experiment in the summer 2015 run. Negative
|
||||
muons entered from the top of the photo. The LYSO detector is not visible
|
||||
in this image, which is located further out in the bottom of the image.}
|
||||
\label{fig:r15a_setup}
|
||||
\end{figure}
|
||||
\end{center}
|
||||
|
||||
@@ -70,4 +75,6 @@ There were several runs with different targets made of aluminum, titanium,
|
||||
lead, water. All targets were sufficiently thick to stop the muon beam with
|
||||
momenta up to \SI{40}{\mega\eVperc}.
|
||||
|
||||
TODO: a table of targets and details
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user