Intro copied from various places
This commit is contained in:
@@ -8,14 +8,13 @@ EXTRASTYS = abhepexpt.sty abhep.sty abmath.sty lineno.sty siunitx.sty SIunits.st
|
|||||||
|
|
||||||
default: $(TARGET)
|
default: $(TARGET)
|
||||||
|
|
||||||
$(TARGET): $(INPUT) extrastyles.zip $(THESIS_STY) Makefile
|
$(TARGET): $(INPUT) extrastyles.zip $(THESIS_STY) Makefile chapters/*.tex
|
||||||
@rm -f $(EXTRASTYS)
|
@rm -f $(EXTRASTYS)
|
||||||
@unzip extrastyles.zip
|
@unzip extrastyles.zip
|
||||||
@rm -f $(DOCNAME).{aux,toc,lof,lot}
|
@rm -f $(DOCNAME).{aux,toc,lof,lot}
|
||||||
pdflatex $< && bibtex $(DOCNAME) && pdflatex $< && pdflatex $<
|
pdflatex $< && bibtex $(DOCNAME) && pdflatex $< && pdflatex $<
|
||||||
@rm -f $(DOCNAME).{aux,toc,lof,lot}
|
@rm -f $(DOCNAME).{aux,toc,lof,lot}
|
||||||
@rm -f $(EXTRASTYS)
|
@rm -f $(EXTRASTYS)
|
||||||
#pdflatex --enable-write18 $< && pdflatex $<
|
|
||||||
|
|
||||||
clean:
|
clean:
|
||||||
@rm -f $(EXTRASTYS)
|
@rm -f $(EXTRASTYS)
|
||||||
|
|||||||
@@ -1,20 +1,251 @@
|
|||||||
\chapter{Introduction}
|
\chapter{Introduction}
|
||||||
\label{chap:SomeStuff}
|
\label{chap:intro}
|
||||||
|
|
||||||
%% Restart the numbering to make sure that this is definitely page #1!
|
%% Restart the numbering to make sure that this is definitely page #1!
|
||||||
\pagenumbering{arabic}
|
\pagenumbering{arabic}
|
||||||
\section{$\mu - e$ conversion}
|
|
||||||
\label{sec:_mu_e_conversion}
|
|
||||||
|
|
||||||
\section{Motivation}
|
\section{Muon to electron conversion}
|
||||||
\label{sec:motivation}
|
\label{sec:_mu_e_conversion}
|
||||||
|
Charged lepton flavor violation (CLFV) belongs to the class of flavor-changing
|
||||||
|
neutral currents, which are suppressed at tree level in the Standard Model
|
||||||
|
(SM) where they are mediated by $\gamma$ and $Z^0$ bosons, but arise at loop
|
||||||
|
level via weak charged currents mediated by the $W^{\pm}$ boson. Because flavor
|
||||||
|
violation requires mixing between generations, CLFV exactly vanishes in the SM
|
||||||
|
with massless neutrinos. Even in the framework of the SM with massive neutrinos
|
||||||
|
and their mixing, branching ratio of CLFV is still very small - for example, in
|
||||||
|
case of \mueg~\cite{marciano}:
|
||||||
|
\begin{equation}
|
||||||
|
\mathcal{B}(\mu^{+} \rightarrow e^{+}\gamma) \simeq
|
||||||
|
10^{-54} \left( \frac{sin^{2}2\theta_{13}}{0.15}\right)
|
||||||
|
\end{equation}
|
||||||
|
This is an unobservably tiny
|
||||||
|
branching ratio so that any experimental evidence of CLFV would be a clear
|
||||||
|
sign of new physics beyond the SM.
|
||||||
|
|
||||||
|
One of the most prominent CLFV processes is
|
||||||
|
a process of coherent muon-to-electron conversion ($\mu
|
||||||
|
- e$ conversion) in the field of a nucleus: \muecaz. When muons are stopped in
|
||||||
|
a target, they are quickly
|
||||||
|
captured by atoms ($~10^{-10}$ s) and cascade down to the 1S orbitals. There,
|
||||||
|
they can undergo:
|
||||||
|
(a) ordinary decay, (b) weak capture, $\mu^- p \rightarrow \nu_\mu n$, or (c)
|
||||||
|
$\mu - e$ conversion, \muec. The last of these reactions is a CLFV process
|
||||||
|
where lepton flavor numbers, $L_\mu$ and $L_e$, are violated by one unit.
|
||||||
|
|
||||||
|
The $\mu - e $ conversion is attractive both from theoretical and experimental
|
||||||
|
points of view. Many extensions of the SM predict that it would has sizeable
|
||||||
|
branching ratio~\cite{altman}. One possible supersymmetric contribution to the
|
||||||
|
$\mu - e$ conversion is shown in Fig.~\ref{fig:susy_contr}. Experimentally, the
|
||||||
|
simplicity and distinctive signal, a mono-energetic electron of energy $E_{e}$:
|
||||||
|
$
|
||||||
|
E_{e} = m_{\mu} - B_{\mu}(Z, A) - R(A) \simeq \textrm{105 MeV},
|
||||||
|
$
|
||||||
|
where $m_\mu$ is the muon mass, $B_\mu(Z, A)$ is the muonic atom binding
|
||||||
|
energy, and $R(A)$ is the nuclear recoil energy, allow experimental searches
|
||||||
|
without accidentals and thus in extremely high rates. As a result, one of the
|
||||||
|
best upper limits of CLFV searches comes from a search for $\mu - e$ conversion
|
||||||
|
in muonic gold done by the SINDRUM--II collaboration:
|
||||||
|
\sindrumlimit~\cite{sindrumii}.
|
||||||
|
|
||||||
|
\begin{figure}[tbh]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{figs/susy_contr}
|
||||||
|
\caption{Possible SUSY contributions to the CLFV processes \mueg
|
||||||
|
(left) and \muec (right).}
|
||||||
|
\label{fig:susy_contr}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
%\section{Motivation}
|
||||||
|
%\label{sec:motivation}
|
||||||
|
|
||||||
\subsection{COMET experiment}
|
\subsection{COMET experiment}
|
||||||
|
|
||||||
|
At the Japan Proton Accelerator Research Complex (J-PARC), an experiment to
|
||||||
|
search for \muec~conversion, which is called COMET (COherent Muon to Electron
|
||||||
|
Transition), has been proposed~\cite{comet07}. The experiment received Stage--1
|
||||||
|
approval in
|
||||||
|
2009. Utilising a proton beam of 56 kW (8 GeV $\times$ 7 $\mu$A) from the
|
||||||
|
J-PARC main ring, the COMET aims for a single event sensitivity of $3 \times
|
||||||
|
10^{-17}$, which is 10000 times better than the current best
|
||||||
|
limit at SINDRUM--II. As of April 2013, the COMET collaboration has 117
|
||||||
|
members in 27 institutes from 12 countries.
|
||||||
|
|
||||||
|
The COMET experiment is designed to be carried out at the Hadron
|
||||||
|
Experimental Facility using a bunched proton beam that is
|
||||||
|
slowly-extracted from the J-PARC main ring. The experimental set-up consists of
|
||||||
|
a dedicated proton beam line, a muon beam transport section, and a detector
|
||||||
|
section. The muon beam section is composed of superconducting magnets: pion
|
||||||
|
capture solenoid and a pion/muon transport solenoid. The
|
||||||
|
detector section has a multi-layered muon stopping target, an electron
|
||||||
|
transport beam line for $\mu - e$ conversion signals,
|
||||||
|
followed by detector systems.
|
||||||
|
|
||||||
|
The COMET collaboration has adopted a staging approach with two
|
||||||
|
phases~\cite{comet12}. COMET Phase--I is scheduled to
|
||||||
|
have an engineering run in 2016, followed by a physics run in 2017. Phase--I
|
||||||
|
should achieve a sensitivity
|
||||||
|
of $3 \times 10^{-15}$, 100 times better than that of SINDRUM--II; while
|
||||||
|
Phase--II will reach a sensitivity of $2.6 \times 10^{-17}$, which is
|
||||||
|
competitive with the Mu2e project at Fermilab~\cite{mu2e08}.
|
||||||
|
A schematic layout of the COMET experiment with its two phases is
|
||||||
|
shown in Fig.~\ref{fig:comet_phase1}, and a schedule for two phases is shown in
|
||||||
|
Fig.~\ref{fig:sched}.
|
||||||
|
\begin{figure}[tbh]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{figs/comet_phase1}
|
||||||
|
\caption{Schematic layout of the COMET experiment with two phases: Phase--I
|
||||||
|
(left) and Phase--II (right).}
|
||||||
|
\label{fig:comet_phase1}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{figure}[tbh]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.8\textwidth]{figs/sched}
|
||||||
|
\caption{The anticipated schedule of the COMET experiment.}
|
||||||
|
\label{fig:sched}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
COMET Phase--I has two major goals:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Background study for the COMET Phase--II by using the actual COMET beam
|
||||||
|
line constructed at Phase--I,
|
||||||
|
\item Search for $\mu-e$ conversion with a single event sensitivity of $3
|
||||||
|
\times 10^{-15}$.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
In order to realize the goals, COMET Phase--I proposes to have two systems of
|
||||||
|
detector. A straw tube detector and an electromagnetic calorimeter will be used
|
||||||
|
for the background study. For the $\mu-e$ conversion search, a cylindrical
|
||||||
|
drift chamber (CDC) will be built.
|
||||||
|
|
||||||
\subsection{Proton emission issue}
|
\subsection{Proton emission issue}
|
||||||
|
We, as a jointed force between Mu2e and COMET, would like to measure rates and
|
||||||
|
energy spectrum of charged particle emission after nuclear muon capture on
|
||||||
|
aluminum. The rates and spectra of charged particle emission, in particular
|
||||||
|
protons, is very important to optimize the detector configuration both for the
|
||||||
|
Mu2e and COMET Phase-I experiments.
|
||||||
|
|
||||||
|
\noindent The tracking chambers of COMET Phase-I and Mu2e are designed to be
|
||||||
|
measure charged particles of their momenta greater than 70 MeV/$c$ and 53
|
||||||
|
MeV/$c$ respectively. In that momentum ranges, it turns out that single hit
|
||||||
|
rates of the tracking chambers would be dominated by protons after nuclear muon
|
||||||
|
capture.
|
||||||
|
The second source of the hit rate will be electrons from muon decays in orbit
|
||||||
|
(DIO). In order to limit the single hit rate of the tracking chamber to an
|
||||||
|
acceptable level, both experiments are considering to place proton absorbers in
|
||||||
|
front of the tracking chambers to reduce proton hit rates. However, the proton
|
||||||
|
absorber would deteriorate the reconstructed momentum resolution of electrons
|
||||||
|
at birth. And similarly the rate of proton emission is important to determine
|
||||||
|
thickness of the muon stopping target made of aluminum. Therefore it is
|
||||||
|
important to know the rate so that the detector system can be optimized in
|
||||||
|
terms of both hit rate and momentum resolution.
|
||||||
|
|
||||||
|
\noindent Unfortunately the yield, energy spectrum and composition of the
|
||||||
|
charged particles emitted in muon capture on Al and Ti have not been measured
|
||||||
|
in the relevant energy range for COMET Phase-I and Mu2e.
|
||||||
|
Figure~\ref{fg:silicon-proton} shows the spectrum of charged particle emission
|
||||||
|
from muons being stopped and captured in a silicon detector \cite{sobo68}. The
|
||||||
|
peak below 1.4 MeV is from the recoiling heavy ions, mainly $^{27}$Al, when no
|
||||||
|
charged particles were emitted. Hungerford~\cite{hung34} fitted the silicon
|
||||||
|
spectrum in Fig.~\ref{fg:silicon-proton} with an empirical function given by
|
||||||
|
%
|
||||||
|
\begin{equation} p(T) = A(1-{T_{th} \over T})^{\alpha} e^{-(T/T_0)}
|
||||||
|
\label{eq:protons} \end{equation}
|
||||||
|
%
|
||||||
|
where $T$ is the kinetic energy and the fitted parameters are $A=0.105$
|
||||||
|
MeV$^{-1}$, $T_{th}$ = 1.4 MeV, $\alpha$=1.328 and $T_0$ = 3.1 MeV. The
|
||||||
|
spectrum is normalized to 0.1 per muon capture. Some other results in the past
|
||||||
|
experiments are summarized in Table~\ref{tb:proton}.
|
||||||
|
|
||||||
|
%\begin{figure}[htb]
|
||||||
|
%\centering
|
||||||
|
%\includegraphics[width=0.7\textwidth]{figs/si-proton.pdf}
|
||||||
|
%\caption{Charged particle spectrum from muons stopping and being captured in
|
||||||
|
%a silicon detector~\cite{sobo68}.}
|
||||||
|
%\label{fg:silicon-proton}
|
||||||
|
%\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{table}[htb]
|
||||||
|
\centering \caption{Probabilities in unites of $10^{-3}$ per
|
||||||
|
muon capture for inclusive proton emission calculated by Lifshitz and
|
||||||
|
Singer~\cite{lifshitz80}.
|
||||||
|
The numbers in crescent parenthesis are estimates for the total inclusive
|
||||||
|
rate derived from the measured exclusive channels by the use of the
|
||||||
|
approximate regularity, such as $(\mu, \nu p):(\mu, \nu p n):(\mu, \nu p
|
||||||
|
2n):(\mu, \nu p 3n) = 1:6:4:4$.}
|
||||||
|
\label{tb:proton}
|
||||||
|
\vskip 3mm
|
||||||
|
\begin{tabularx}{\textwidth}{ccccX}
|
||||||
|
\toprule
|
||||||
|
Target nucleus & Calculation & Experiment & Estimate & Comments \\
|
||||||
|
\midrule
|
||||||
|
%$_{10}$Ne & & $200\pm 40$ & & \\
|
||||||
|
$^{27}_{13}$Al & 40 & $>28 \pm 4$ & (70) & 7.5 for $T>40$ MeV \\
|
||||||
|
$^{28}_{14}$Si & 144 & $150\pm30$ & & 3.1 and 0.34 $d$ for $T>18$ MeV \\
|
||||||
|
$^{31}_{15}$P & 35 & $>61\pm6$ & (91) & \\
|
||||||
|
$^{46}_{22}$Ti & & & & \\
|
||||||
|
$^{51}_{23}$V & 25 & $>20\pm1.8$ & (32) & \\
|
||||||
|
\bottomrule
|
||||||
|
\end{tabularx}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
\noindent The limited information available at present makes it difficult to
|
||||||
|
draw quantitative conclusive detector design. From Table~\ref{tb:proton}, the
|
||||||
|
yield for Al can be taken from experiment to be $>$3\% for $T>40$ MeV, or from
|
||||||
|
theory to be 4\%, or estimated based on the ratio of exclusive channels from
|
||||||
|
other nuclei to be 7\%, or speculated to be as high as Si
|
||||||
|
%or Ne
|
||||||
|
, namely 15-20\%. The
|
||||||
|
energy spectrum can only be inferred from the Si data or from
|
||||||
|
Ref.~\cite{bala67}. At this moment, for both COMET Phase-I and Mu2e, this
|
||||||
|
analytical spectrum has been used to estimate proton emission. And also the $p,
|
||||||
|
d, \alpha$ composition is not known. The Ti proton yield can only be estimated
|
||||||
|
from V to be around 3\%.
|
||||||
|
|
||||||
|
\noindent It might be worth to present how proton emission affects a single
|
||||||
|
rate of the tracking chambers. As an example for COMET Phase-I, single rates
|
||||||
|
of the tracking chamber (cylindrical drift chamber) have been simulated based
|
||||||
|
on the spectrum given in Eq.(\ref{eq:protons}). To reduce protons entering the
|
||||||
|
tracking chamber, in addition to the inner wall of the drift chamber (of 400
|
||||||
|
$\mu$m) a cylindrical proton absorber of different thickness is located in
|
||||||
|
front of the tracking chamber. Monte Carlo simulations were done with three
|
||||||
|
different thickness of proton degrader, namely 0~mm, 5~mm, and 7.5~mm.
|
||||||
|
%Figure~\ref{fig:protongenerated} shows a proton momentum spectrum generated
|
||||||
|
(larger than 50 MeV/$c$) in the simulation study, and regions in red show
|
||||||
|
protons reaching the first layer. The results are summarized in
|
||||||
|
Table~\ref{tb:protonhits}, where the proton emission rate of 0.15 per muon
|
||||||
|
capture is assumed. If we assume the number of muons stopped in the
|
||||||
|
muon-stopping target is $5.8 \times 10^{9}$/s, the number of muon capture on
|
||||||
|
aluminum is about $3.5 \times 10^{9}$/s since the fraction of muon capture in
|
||||||
|
aluminum is $f_{cap}=0.61$. Therefore the total number of hits in all the cells
|
||||||
|
in the first layer is estimated to be 530 kHz (1.3 MHz) for the case of a
|
||||||
|
proton degrader of 5 mm (0 mm) thickness. This example present the importance
|
||||||
|
to understand the proton emission, rate and spectrum, from nuclear muon capture
|
||||||
|
on aluminum for COMET Phase-I and Mu2e.
|
||||||
|
%
|
||||||
|
\begin{table}[htb]
|
||||||
|
\begin{center}
|
||||||
|
\caption{Total numbers of hits in the first
|
||||||
|
layer by protons emitted from muon capture for different trigger counter
|
||||||
|
thickness. 100 k proton events were generated for COMET Phase-I. 15 \%
|
||||||
|
protons per muon capture is assumed.}
|
||||||
|
\label{tb:protonhits}
|
||||||
|
\vspace{5mm}
|
||||||
|
\begin{tabular}{lccc}
|
||||||
|
\toprule
|
||||||
|
Proton degrader thickness & 0 mm & 5 mm& 7.5 mm\\
|
||||||
|
\midrule
|
||||||
|
% number of 1 hit events & 2467 & 87 & 28 \cr\hline number of 2 hit events &
|
||||||
|
% 73 & 8 & 1 \cr\hline number of 3 hit events & 9 & 0 & 0 \cr\hline\hline
|
||||||
|
% number of 4 hit events & 1 & 0 & 0 \cr\hline\hline
|
||||||
|
Hits & 2644 & 103 & 30 \cr
|
||||||
|
Hits per proton emission & 2.6 \% & 0.1 \% & 0.03 \% \cr
|
||||||
|
Hits per muon capture & $3.9\times10^{-3}$ & $1.5\times10^{-4}$ & $4.5\times10^{-5}$ \cr
|
||||||
|
\bottomrule
|
||||||
|
\end{tabular}
|
||||||
|
\end{center}
|
||||||
|
\end{table}
|
||||||
\subsection{Any physics implication??}
|
\subsection{Any physics implication??}
|
||||||
|
|
||||||
% section motivation (end)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% section _mu_e_conversion (end)
|
% section _mu_e_conversion (end)
|
||||||
|
|||||||
@@ -1,46 +1,46 @@
|
|||||||
%% Title
|
%% Title
|
||||||
\titlepage[of Churchill College]%
|
\titlepage[of Graduate School of Science]%
|
||||||
{A dissertation submitted to the University of Cambridge\\
|
{A dissertation submitted to the Osaka University\\
|
||||||
for the degree of Doctor of Philosophy}
|
for the degree of Doctor of Philosophy}
|
||||||
|
|
||||||
%% Abstract
|
%% Abstract
|
||||||
\begin{abstract}%[\smaller \thetitle\\ \vspace*{1cm} \smaller {\theauthor}]
|
\begin{abstract}%[\smaller \thetitle\\ \vspace*{1cm} \smaller {\theauthor}]
|
||||||
%\thispagestyle{empty}
|
%\thispagestyle{empty}
|
||||||
\LHCb is a \bphysics detector experiment which will take data at
|
\LHCb is a \bphysics detector experiment which will take data at
|
||||||
the \unit{14}{\TeV} \LHC accelerator at \CERN from 2007 onward\dots
|
the \unit{14}{\TeV} \LHC accelerator at \CERN from 2007 onward\dots
|
||||||
\end{abstract}
|
\end{abstract}
|
||||||
|
|
||||||
|
|
||||||
%% Declaration
|
%% Declaration
|
||||||
\begin{declaration}
|
\begin{declaration}
|
||||||
This dissertation is the result of my own work, except where explicit
|
This dissertation is the result of my own work, except where explicit
|
||||||
reference is made to the work of others, and has not been submitted
|
reference is made to the work of others, and has not been submitted
|
||||||
for another qualification to this or any other university. This
|
for another qualification to this or any other university. This
|
||||||
dissertation does not exceed the word limit for the respective Degree
|
dissertation does not exceed the word limit for the respective Degree
|
||||||
Committee.
|
Committee.
|
||||||
\vspace*{1cm}
|
\vspace*{1cm}
|
||||||
\begin{flushright}
|
\begin{flushright}
|
||||||
Andy Buckley
|
Andy Buckley
|
||||||
\end{flushright}
|
\end{flushright}
|
||||||
\end{declaration}
|
\end{declaration}
|
||||||
|
|
||||||
|
|
||||||
%% Acknowledgements
|
%% Acknowledgements
|
||||||
\begin{acknowledgements}
|
\begin{acknowledgements}
|
||||||
Of the many people who deserve thanks, some are particularly prominent,
|
Of the many people who deserve thanks, some are particularly prominent,
|
||||||
such as my supervisor\dots
|
such as my supervisor\dots
|
||||||
\end{acknowledgements}
|
\end{acknowledgements}
|
||||||
|
|
||||||
|
|
||||||
%% Preface
|
%% Preface
|
||||||
\begin{preface}
|
\begin{preface}
|
||||||
This thesis describes my research on various aspects of the \LHCb
|
This thesis describes my research on various aspects of the \LHCb
|
||||||
particle physics program, centred around the \LHCb detector and \LHC
|
particle physics program, centred around the \LHCb detector and \LHC
|
||||||
accelerator at \CERN in Geneva.
|
accelerator at \CERN in Geneva.
|
||||||
|
|
||||||
\noindent
|
\noindent
|
||||||
For this example, I'll just mention \ChapterRef{chap:SomeStuff}
|
For this example, I'll just mention \ChapterRef{chap:SomeStuff}
|
||||||
and \ChapterRef{chap:MoreStuff}.
|
and \ChapterRef{chap:MoreStuff}.
|
||||||
\end{preface}
|
\end{preface}
|
||||||
|
|
||||||
%% ToC
|
%% ToC
|
||||||
@@ -49,6 +49,6 @@
|
|||||||
|
|
||||||
%% Strictly optional!
|
%% Strictly optional!
|
||||||
\frontquote{%
|
\frontquote{%
|
||||||
Writing in English is the most ingenious torture\\
|
Writing in English is the most ingenious torture\\
|
||||||
ever devised for sins committed in previous lives.}%
|
ever devised for sins committed in previous lives.}%
|
||||||
{James Joyce}
|
{James Joyce}
|
||||||
|
|||||||
10
thesis/custom_macro.tex
Normal file
10
thesis/custom_macro.tex
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
|
||||||
|
\newcommand{\lagr}{\cal{L}}
|
||||||
|
\newcommand{\mueg}{$\mu^{+} \rightarrow e^{+}\gamma$}
|
||||||
|
\newcommand{\meee}{$\mu \rightarrow eee$}
|
||||||
|
\newcommand{\muenn}{$\mu \rightarrow e \nu \overline{\nu}$}
|
||||||
|
\newcommand{\muenng}{$\mu \rightarrow e \nu \overline{\nu} \gamma$}
|
||||||
|
\newcommand{\muec}{$\mu^{-} N \rightarrow e^{-} N$}
|
||||||
|
\newcommand{\muecaz}{$\mu^{-} + N(A,Z) \rightarrow e^{-} + N(A,Z)$}
|
||||||
|
\newcommand{\sindrumlimit}
|
||||||
|
{$\mathcal{B} (\mu^- + Au \rightarrow e^- +Au) < 7\times 10^{-13}$}
|
||||||
@@ -1,4 +1,4 @@
|
|||||||
\ProvidesPackage{thesis}[2005/07/28]
|
\ProvidesPackage{mythesis}[2005/07/28]
|
||||||
%\RequirePackage{timing}
|
%\RequirePackage{timing}
|
||||||
\RequirePackage{hepnicenames,abhep}
|
\RequirePackage{hepnicenames,abhep}
|
||||||
% \RequirePackage{siunitx}
|
% \RequirePackage{siunitx}
|
||||||
|
|||||||
@@ -1,6 +1,11 @@
|
|||||||
\documentclass{mythesis}
|
\documentclass{mythesis}
|
||||||
\usepackage{mythesis}
|
\usepackage{mythesis}
|
||||||
|
\usepackage{hyperref}
|
||||||
|
\usepackage{booktabs}
|
||||||
|
\usepackage{tabularx}
|
||||||
|
\usepackage{color}
|
||||||
|
|
||||||
|
\input{custom_macro.tex}
|
||||||
%% You can set the line spacing this way
|
%% You can set the line spacing this way
|
||||||
%\setallspacing{double}
|
%\setallspacing{double}
|
||||||
%% or a section at a time like this
|
%% or a section at a time like this
|
||||||
@@ -10,17 +15,18 @@
|
|||||||
\makeatletter
|
\makeatletter
|
||||||
\@ifpackageloaded{hyperref}{%
|
\@ifpackageloaded{hyperref}{%
|
||||||
\hypersetup{%
|
\hypersetup{%
|
||||||
pdftitle = {Studying B to K pi decays with LHCb},
|
pdftitle = {A Study of Muon Capture for Muon to Electron Conversion
|
||||||
pdfsubject = {Andy Buckley's PhD thesis},
|
Experiments},
|
||||||
pdfkeywords = {LHCb, B, physics, LHC, heavy flavour},
|
pdfsubject = {Nam H Tran's PhD thesis},
|
||||||
pdfauthor = {\textcopyright\ Andy Buckley}
|
pdfkeywords = {muon capture, muon to electron conversion, COMET},
|
||||||
|
pdfauthor = {\textcopyright\ Nam Hoai Tran}
|
||||||
}
|
}
|
||||||
}{}
|
}{}
|
||||||
\makeatother
|
\makeatother
|
||||||
|
|
||||||
%% Define the thesis title and author
|
%% Define the thesis title and author
|
||||||
\title{A study of \BToKPi decays with\\ the \LHCb experiment}
|
\title{A Study of Muon Capture for \\Muon to Electron Conversion Experiments}
|
||||||
\author{Andrew Gordon Buckley}
|
\author{Nam Hoai Tran}
|
||||||
|
|
||||||
%% Start the document
|
%% Start the document
|
||||||
\begin{document}
|
\begin{document}
|
||||||
@@ -34,11 +40,11 @@ pdfauthor = {\textcopyright\ Andy Buckley}
|
|||||||
\begin{mainmatter}
|
\begin{mainmatter}
|
||||||
%% Actually, more semantic chapter filenames are better, like "chap-bgtheory.tex"
|
%% Actually, more semantic chapter filenames are better, like "chap-bgtheory.tex"
|
||||||
\input{chapters/chap1}
|
\input{chapters/chap1}
|
||||||
\input{chapters/chap2}
|
%\input{chapters/chap2}
|
||||||
\input{chapters/chap3}
|
%\input{chapters/chap3}
|
||||||
\input{chapters/chap4}
|
%\input{chapters/chap4}
|
||||||
\input{chapters/chap5}
|
%\input{chapters/chap5}
|
||||||
\input{chapters/chap6}
|
%\input{chapters/chap6}
|
||||||
%% To ignore a specific chapter while working on another,
|
%% To ignore a specific chapter while working on another,
|
||||||
%% making the build faster, comment it out like this:
|
%% making the build faster, comment it out like this:
|
||||||
%\input{chapters/chap4}
|
%\input{chapters/chap4}
|
||||||
|
|||||||
Reference in New Issue
Block a user