prog saved
This commit is contained in:
@@ -765,6 +765,7 @@ sets are shown in \cref{tb:stat}.
|
|||||||
% section data_sets (end)
|
% section data_sets (end)
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\section{Analysis framework}
|
\section{Analysis framework}
|
||||||
|
\label{sec:analysis_framework}
|
||||||
\subsection{Concept}
|
\subsection{Concept}
|
||||||
\label{sub:concept}
|
\label{sub:concept}
|
||||||
Since the AlCapDAQ is a trigger-less system, it stored all waveforms of the
|
Since the AlCapDAQ is a trigger-less system, it stored all waveforms of the
|
||||||
|
|||||||
@@ -9,33 +9,37 @@ Purposes of the analysis include:
|
|||||||
using specific energy loss;
|
using specific energy loss;
|
||||||
\item extracting a preliminary rate of proton emission from aluminium.
|
\item extracting a preliminary rate of proton emission from aluminium.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\section{Charged particles following muon capture on a thick silicon target}
|
|
||||||
\label{sec:charged_particles_from_muon_capture_on_silicon_thick_silicon}
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\section{Number of stopped muons normalisation}
|
||||||
|
\label{sec:number_of_stopped_muons_normalisation}
|
||||||
|
The active silicon target runs was used to check for the validity of the
|
||||||
|
counting of number of stopped muons, where the number can be calculated by two
|
||||||
|
methods:
|
||||||
|
\begin{itemize}
|
||||||
|
\item counting hits on the active target in coincidence with hits on the
|
||||||
|
upstream scintillator counter;
|
||||||
|
\item inferred from number of X-rays recorded by the germanium detector.
|
||||||
|
\end{itemize}
|
||||||
This analysis was done on a subset of the active target runs
|
This analysis was done on a subset of the active target runs
|
||||||
\numrange{2119}{2140} because of the problem of wrong clock frequency found in
|
\numrange{2119}{2140} because of the problem of wrong clock frequency found in
|
||||||
the data quality checking shown in \cref{fig:lldq}. The data set contains
|
the data quality checking shown in \cref{fig:lldq}. The data set contains
|
||||||
%\num[fixed-exponent=2, scientific-notation = fixed]{6.4293720E7} muon events.
|
%\num[fixed-exponent=2, scientific-notation = fixed]{6.4293720E7} muon events.
|
||||||
\num{6.43E7} muon events.
|
\num{6.43E7} muon events.
|
||||||
|
|
||||||
Firstly, the number of charged particles emitted after nuclear muon capture on
|
\subsection{Number of stopped muons from active target counting}
|
||||||
the active target is calculated. The charged particles yield then is normalised
|
|
||||||
to the number of nuclear muon capture to obtain an emission rate.
|
|
||||||
%Finally, the
|
|
||||||
%rate is compared with that from the literature.
|
|
||||||
|
|
||||||
\subsection{Event selection}
|
|
||||||
\label{sub:event_selection}
|
\label{sub:event_selection}
|
||||||
Because of the active target, a stopped muon would cause two coincident hits on
|
Because of the active target, a stopped muon would cause two coincident hits on
|
||||||
the muon counter and the target. The energy of the muon hit on the active
|
the muon counter and the target. The energy of the muon hit on the active
|
||||||
target is also well-defined as the narrow-momentum-spread beam was used. The
|
target is also well-defined as the narrow-momentum-spread beam was used. The
|
||||||
correlation between the energy and timing of all the hits on the active target
|
correlation between the energy and timing of all the hits on the active target
|
||||||
is shown in \cref{fig:sir2f_Et_corr}. The most intense spot at zero time
|
is shown in \cref{fig:sir2f_Et_corr}. The most intense spot at zero time
|
||||||
and about 5 MeV energy corresponds to stopped muons in the thick target. The
|
and about \SI{5}{\MeV} energy corresponds to stopped muons in the thick target.
|
||||||
band below 1 MeV is due to electrons, either in the beam or from muon decay in
|
The band below \SI{1}{\MeV} is due to electrons, either in the beam or from
|
||||||
orbits, or emitted during the cascading of muon to the muonic 1S state. The
|
muon decay in orbits, or emitted during the cascading of muon to the muonic 1S
|
||||||
valley between time zero and 1200~ns shows the minimum distance in time between
|
state. The valley between time zero and 1200~ns shows the minimum distance in
|
||||||
two pulses. It is the mentioned limitation of the current pulse parameter
|
time between two pulses. It is the mentioned limitation of the current pulse
|
||||||
extraction method where no pile up or double pulses is accounted for.
|
parameter extraction method where no pile up or double pulses is accounted for.
|
||||||
|
|
||||||
\begin{figure}[htb]
|
\begin{figure}[htb]
|
||||||
\centering
|
\centering
|
||||||
@@ -79,116 +83,19 @@ From the energy-timing correlation above, the cuts to select stopped muons are:
|
|||||||
\label{eqn:sir2_muE_cut}
|
\label{eqn:sir2_muE_cut}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
In order to measure the charged particles after nuclear muon capture, one would
|
The two cuts~\eqref{eqn:sir2_prompt_cut} and~\eqref{eqn:sir2_muE_cut} give
|
||||||
pick events where the emitted particles are well separated from the
|
a number of stopped muons counted by the active target:
|
||||||
muon stop time. The energy timing correlation plot suggests a timing window
|
|
||||||
starting from at least 1200~ns, therefore another cut is introduced:
|
|
||||||
\begin{enumerate}
|
|
||||||
\setcounter{enumi}{2}
|
|
||||||
\item there are at least two hits on the active target, the time
|
|
||||||
difference between the second hit on target (decay or capture product) and
|
|
||||||
the muon counter hit is at least 1300 ns:
|
|
||||||
\begin{equation}
|
|
||||||
t_{\textrm{target 2nd hit}} - t_{\mu\textrm{ counter}} \geq \SI{1300}{\ns}
|
|
||||||
\label{eqn:sir2_2ndhit_cut}
|
|
||||||
\end{equation}
|
|
||||||
\end{enumerate}
|
|
||||||
|
|
||||||
The three cuts~\eqref{eqn:sir2_prompt_cut},~\eqref{eqn:sir2_muE_cut} and
|
|
||||||
~\eqref{eqn:sir2_2ndhit_cut} reduce the sample to the size of \num{9.82E+5}.
|
|
||||||
|
|
||||||
The number of stopped muons can also be calculated from the number of muonic
|
|
||||||
X-rays recorded by the germanium detector. The X-rays are emitted during the
|
|
||||||
cascading of the muon to the muonic 1S state in the time scale of \SI{E-9}{\s},
|
|
||||||
so the hit caused by the X-rays must be in coincidence with the muon hit on the
|
|
||||||
active target. Therefore an additional timing cut is applied for the germanium
|
|
||||||
detector hits:
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\lvert t_{\textrm{Ge}} - t_{\mu\textrm{ counter}} \rvert < \SI{500}{\ns}
|
N_{\mu \textrm{ active Si}} = 9.32 \times 10^6
|
||||||
\label{eqn:sir2_ge_cut}
|
\label{eqn:n_stopped_si_count}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
\subsection{Number of stopped muons from the number of X-rays}
|
||||||
\subsection{Number of charged particles with energy above \SI{3}{\MeV}}
|
\label{sub:number_of_stopped_muons_from_the_number_of_x_rays}
|
||||||
\label{sub:number_of_charged_particles_with_energy_from_8_10_mev}
|
The number of nuclear captures, hence the number of stopped muons in the
|
||||||
As shown in \cref{fig:sir2_1us_slices} and illustrated by MC simulation
|
active silicon target, can be inferred from the number of emitted
|
||||||
in \cref{fig:sir2_mc_pdfs}, there are several components in
|
muonic X-rays. The reference energies and intensities of the most prominent
|
||||||
the energy spectrum recorded by the active target:
|
lines of silicon and aluminium are listed in \cref{tab:mucap_pars}.
|
||||||
\begin{enumerate}
|
|
||||||
\item charged particles from nuclear muon capture, this is the signal of
|
|
||||||
interest;
|
|
||||||
\item beam electrons with a characteristic Landau peak around \SI{800}{\keV},
|
|
||||||
dominating at large delay (from \SI{6500}{\ns}), causing background at
|
|
||||||
energy lower than \SI{1}{\MeV} which drops sharply at energy larger than
|
|
||||||
\SI{3}{\MeV};
|
|
||||||
\item electrons from muon decay-in-orbit (DIO) and recoiled nuclei
|
|
||||||
from neutron emitting muon captures, peak at
|
|
||||||
around \SI{300}{\keV}, dominate the region where energy smaller than
|
|
||||||
\SI{1}{\MeV} and delay less than \SI{3500}{\ns}. This component is
|
|
||||||
intrinsic background, having the same time structure as that of the signal;
|
|
||||||
\item stray muons scattered into the target, this component is small compares
|
|
||||||
to the charged particles yield so it is not considered further.
|
|
||||||
\end{enumerate}
|
|
||||||
\begin{figure}[htb]
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=0.45\textwidth]{figs/sir2_meas_spec}
|
|
||||||
\includegraphics[width=0.45\textwidth]{figs/sir2_mc_pdfs}
|
|
||||||
\caption{The observed spectrum in the timing window 1300 -- 10000~ns (left)
|
|
||||||
and its components from MC simulation (right). The charged particles
|
|
||||||
spectrum is obtained assuming the spectrum shape and emission rate from
|
|
||||||
Sobottka and Wills~\cite{SobottkaWills.1968}. The relative scales between
|
|
||||||
components are arbitrarily chosen for the purpose of illustration.}
|
|
||||||
\label{fig:sir2_mc_pdfs}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
An energy cut at \SI{2}{\MeV} is introduced to avoid the domination of the
|
|
||||||
beam electrons at low energy. In order to obtain the yields of backgrounds
|
|
||||||
above \SI{2}{\MeV}, a binned maximum likelihood fit was done. The likelihood of
|
|
||||||
getting the measured spectrum is defined as:
|
|
||||||
\begin{equation}
|
|
||||||
L = \frac{e^{-\mu}\mu^n}{n!}\prod_i \frac{\mu_i^{n_i} e^{-\mu_i}}{n_i!}
|
|
||||||
\label{eqn:llh_def}
|
|
||||||
\end{equation}
|
|
||||||
where $n$ is the total number of events observed, $\mu$ is the expected number
|
|
||||||
of events according to some linear combination of the signal and the
|
|
||||||
backgrounds shown in~\ref{fig:sir2_mc_pdfs}, namely:
|
|
||||||
\begin{align}
|
|
||||||
n &= n_{\textrm{sig}} + n_{\textrm{beam e}} + n_{\textrm{dio}}\\
|
|
||||||
\textrm{(sum pdf)} &= n_{\textrm{sig}}\times\textrm{(sig pdf)} +
|
|
||||||
n_{\textrm{beam e}}\times\textrm{(beam e pdf)} +
|
|
||||||
n_{\textrm{dio}}\times\textrm{(dio pdf)};
|
|
||||||
\label{eqn:sum_pdf}
|
|
||||||
\end{align}
|
|
||||||
and the $i$ index indicates the respective number of events in the $i$-th
|
|
||||||
bin.
|
|
||||||
|
|
||||||
The fit is done by the RooFit package~\cite{VerkerkeKirkby.2003} where the
|
|
||||||
negative log likelihood $-2\ln{L}$ is minimised. Fitting results are shown
|
|
||||||
in~\ref{fig:sir2_mll_fit}, the yields of backgrounds and signal are:
|
|
||||||
\begin{align}
|
|
||||||
n_{\textrm{beam e}} &= 23756 \pm 581\\
|
|
||||||
n_{\textrm{dio}} &= 111340 \pm 1245\\
|
|
||||||
n_{\textrm{sig}} &= 2.57 \pm 856
|
|
||||||
\label{eqn:sir2_n_chargedparticles}
|
|
||||||
\end{align}
|
|
||||||
\begin{figure}[htb]
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=0.42\textwidth]{figs/sir2_mllfit_nbkg}
|
|
||||||
\includegraphics[width=0.42\textwidth]{figs/sir2_mllfit_nebeam}
|
|
||||||
\includegraphics[width=0.84\textwidth]{figs/sir2_mllfit}
|
|
||||||
\caption{Results of the maximum likelihood fit of the energy spectrum on the
|
|
||||||
active target.}
|
|
||||||
\label{fig:sir2_mll_fit}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
% subsection number_of_charged_particles_with_energy_from_8_10_mev (end)
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
\subsection{Number of nuclear muon captures}
|
|
||||||
\label{sub:number_of_stopped_muons}
|
|
||||||
The number of nuclear captures can be inferred from the number of recorded
|
|
||||||
muonic X-rays. The reference values of the parameters needed for the
|
|
||||||
calculation taken from Suzuki et al.~\cite{SuzukiMeasday.etal.1987} and Measday
|
|
||||||
et al.~\cite{MeasdayStocki.etal.2007} are listed in \cref{tab:mucap_pars}.
|
|
||||||
\begin{table}[htb]
|
\begin{table}[htb]
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\begin{tabular}{l l l}
|
\begin{tabular}{l l l}
|
||||||
@@ -208,130 +115,452 @@ et al.~\cite{MeasdayStocki.etal.2007} are listed in \cref{tab:mucap_pars}.
|
|||||||
\label{tab:mucap_pars}
|
\label{tab:mucap_pars}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
The muonic X-ray spectrum emitted from the active target is shown in
|
The muonic X-rays are emitted during the cascading of the muon to the muonic 1S
|
||||||
\cref{fig:sir2_xray}. The $(2p-1s)$ line is seen at
|
state in the time scale of \SI{E-9}{\s}, so the hit caused by the X-rays must
|
||||||
399.5~\si{\keV}, 0.7~\si{\keV}\ off from the reference value of
|
be in coincidence with the muon hit on the active target. Therefore an
|
||||||
400.177~\si{\keV}. This discrepancy is within our detector's resolution,
|
additional timing cut is applied for the germanium detector hits:
|
||||||
and the calculated efficiency is $(4.549 \pm 0.108)\times 10^{-5}$ -- a 0.15\%
|
\begin{equation}
|
||||||
increasing from that of the 400.177~keV line, so no attempt for recalibration
|
\lvert t_{\textrm{Ge}} - t_{\mu\textrm{ counter}} \rvert < \SI{500}{\ns}
|
||||||
or correction was made.
|
\label{eqn:sir2_ge_cut}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
The germanium spectrum after three
|
||||||
|
cuts~\eqref{eqn:sir2_prompt_cut},~\eqref{eqn:sir2_muE_cut}
|
||||||
|
and~\eqref{eqn:sir2_ge_cut} is plotted in \cref{fig:sir2_xray}. The $(2p-1s)$
|
||||||
|
line clearly showed up at \SI{400}{\keV} with very low background. A peak at
|
||||||
|
\SI{476}{\keV} is identified as the $(3p-1s)$ transition. Higher transitions
|
||||||
|
such as $(4p-1s)$, $(5p-1s)$ and $(6p-1s)$ can also be recognised at
|
||||||
|
\SI{504}{\keV}, \SI{516}{\keV} and \SI{523}{\keV}, respectively.
|
||||||
|
%The $(2p-1s)$
|
||||||
|
%line is seen at 399.5~\si{\keV}, 0.7~\si{\keV} off from the reference value of
|
||||||
|
%400.177~\si{\keV}. This discrepancy is within our detector's resolution,
|
||||||
|
%and the calculated efficiency is $(4.549 \pm 0.108)\times 10^{-5}$ -- a 0.15\%
|
||||||
|
%increasing from that of the 400.177~keV line, so no attempt for recalibration
|
||||||
|
%or correction was made.
|
||||||
\begin{figure}[htb]
|
\begin{figure}[htb]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.85\textwidth]{figs/sir2_xray}
|
\includegraphics[width=0.85\textwidth]{figs/sir2_xray_22}
|
||||||
\caption{Prompt muonic X-rays spectrum from the active silicon target, the
|
\caption{Prompt muonic X-rays spectrum from the active silicon target.
|
||||||
two major lines $(2p-1s)$ and $(3p-1s)$ are clearly distinguishable at 400
|
|
||||||
and 476 keV, respectively. The $(5p-1s)$ line at 504 keV and $(6p-1s)$ line
|
|
||||||
at 516 keV can also be seen.
|
|
||||||
}
|
}
|
||||||
\label{fig:sir2_xray}
|
\label{fig:sir2_xray}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
|
The net area of the $(2p-1s)$ is found to be 2929.7 by fitting a Gaussian
|
||||||
|
peak on top of a first-order polynomial from \SIrange{395}{405}{\keV}.
|
||||||
|
Using the same procedure of correcting described in
|
||||||
|
\cref{sub:germanium_detector}, and taking detector acceptance and X-ray
|
||||||
|
intensity into account (see \cref{tab:sir2_xray_corr}), the number of muon
|
||||||
|
stopped is:
|
||||||
|
\begin{equation}
|
||||||
|
N_{\mu \textrm{ stopped X-ray}} = (9.16 \pm 0.28)\times 10^6,
|
||||||
|
\label{eqn:n_stopped_xray_count}
|
||||||
|
\end{equation}
|
||||||
|
which is consistent with the number of X-rays counted using the active target.
|
||||||
|
\begin{table}[btp]
|
||||||
|
\begin{center}
|
||||||
|
\begin{tabular}{@{}llll@{}}
|
||||||
|
\toprule
|
||||||
|
\textbf{Measured X-rays} & \textbf{Value} & \textbf{Absolute error} & \textbf{Relative error} \\ \midrule
|
||||||
|
Gross integral & 3083 & & \\
|
||||||
|
Background & 101.5 & & \\
|
||||||
|
Net area $(2p-1s)$ & 2929.7 & 56.4 & 0.02 \\
|
||||||
|
\vspace{0.03em}\\
|
||||||
|
\toprule
|
||||||
|
\textbf{Corrections} & \textbf{Value} & \multicolumn{2}{c}{\textbf{Details}}\\
|
||||||
|
\midrule
|
||||||
|
Random summing & 1.06 & \multicolumn{2}{l}{average count rate \SI{491.4}{\Hz},}\\
|
||||||
|
& & \multicolumn{2}{l}{pulse length \SI{57}{\us}}\\
|
||||||
|
TRP reset & 1.03 & \multicolumn{2}{l}{\SI{298}{\s} loss during \SI{9327}{\s} run period}\\
|
||||||
|
Self-absorption & 1.008 & \multicolumn{2}{l}{silicon thickness \SI{750}{\um},}\\
|
||||||
|
& & \multicolumn{2}{l}{linear attenuation \SI{0.224}{\per\cm}}\\
|
||||||
|
True coincidence & 1 & \multicolumn{2}{l}{omitted} \\
|
||||||
|
\vspace{0.03em}\\
|
||||||
|
\toprule
|
||||||
|
\textbf{Efficiency and intensity} & \textbf{Value} & \textbf{Absolute error} & \textbf{Relative error} \\
|
||||||
|
\midrule
|
||||||
|
Detector efficiency & \num{4.40E-4} & \num{0.978E-5} & 0.02 \\
|
||||||
|
X-ray intensity & 0.803 & 0.008 & 0.009 \\
|
||||||
|
\vspace{0.03em}\\
|
||||||
|
\toprule
|
||||||
|
\textbf{Results} & \textbf{Value} & \textbf{Absolute error} & \textbf{Relative error} \\
|
||||||
|
\midrule
|
||||||
|
Number of X-rays emitted & \num{7.36E6} & \num{0.22E6} & 0.03 \\
|
||||||
|
Number of muons stopped & \num{9.16E6} & \num{0.28E6} & 0.03 \\
|
||||||
|
\bottomrule
|
||||||
|
\end{tabular}
|
||||||
|
\end{center}
|
||||||
|
\caption{Corrections, efficiency and intensity used in calculating the number
|
||||||
|
of X-rays from the active target.}
|
||||||
|
\label{tab:sir2_xray_corr}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
%In order to measure the charged particles after nuclear muon capture, one would
|
||||||
|
%pick events where the emitted particles are well separated from the
|
||||||
|
%muon stop time. The energy timing correlation plot suggests a timing window
|
||||||
|
%starting from at least 1200~ns, therefore another cut is introduced:
|
||||||
|
%\begin{enumerate}
|
||||||
|
%\setcounter{enumi}{2}
|
||||||
|
%\item there are at least two hits on the active target, the time
|
||||||
|
%difference between the second hit on target (decay or capture product) and
|
||||||
|
%the muon counter hit is at least 1300 ns:
|
||||||
|
%\begin{equation}
|
||||||
|
%t_{\textrm{target 2nd hit}} - t_{\mu\textrm{ counter}} \geq \SI{1300}{\ns}
|
||||||
|
%\label{eqn:sir2_2ndhit_cut}
|
||||||
|
%\end{equation}
|
||||||
|
%\end{enumerate}
|
||||||
|
|
||||||
|
%The three cuts~\eqref{eqn:sir2_prompt_cut},~\eqref{eqn:sir2_muE_cut} and
|
||||||
|
%~\eqref{eqn:sir2_2ndhit_cut} reduce the sample to the size of \num{9.82E+5}.
|
||||||
|
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\section{Particle identification by specific energy loss}
|
||||||
|
\label{sec:particle_identification_by_specific_energy_loss}
|
||||||
|
In this analysis, a subset of runs from \numrange{2808}{2873} with the
|
||||||
|
100-\si{\um} aluminium target is used because of following advantages:
|
||||||
|
\begin{itemize}
|
||||||
|
\item it was easier to stop and adjust the muon stopping distribution in
|
||||||
|
this thicker target;
|
||||||
|
\item a thicker target means more stopped muons due to higher muon rate
|
||||||
|
available at higher momentum and less scattering.
|
||||||
|
\end{itemize}
|
||||||
|
Muons momentum of \SI{30.52}{\MeV\per\cc}, 3\%-FWHM spread (scaling factor of
|
||||||
|
1.09, normalised to \SI{28}{\MeV\per\cc}) were used for this target after
|
||||||
|
a momentum scanning as described in the next subsection.
|
||||||
|
|
||||||
|
\subsection{Momentum scan for the 100-\si{\um} aluminium target}
|
||||||
|
\label{sub:momentum_scan_for_the_100_}
|
||||||
|
Before deciding to use the momentum scaling factor of 1.09, we have scanned
|
||||||
|
with momentum scales ranging from 1.04 to 1.12 to maximise the
|
||||||
|
observed X-rays rate(and hence maximising the rate of stopped muons). The X-ray
|
||||||
|
spectrum at each momentum point was accumulated in more than 30 minutes to
|
||||||
|
assure a sufficient amount of counts. Details of the scanning runs are listed
|
||||||
|
in \cref{tab:al100_scan}.
|
||||||
|
\begin{table}[htb]
|
||||||
|
\begin{center}
|
||||||
|
\begin{tabular}{cccc}
|
||||||
|
\toprule
|
||||||
|
\textbf{Momentum (\si{\MeV\per\cc})} & \textbf{Scaling factor} & \textbf{Runs}
|
||||||
|
& \textbf{Length (s)}\\
|
||||||
|
\midrule
|
||||||
|
29.12 & 1.04 & \numrange{2609}{2613} &2299\\
|
||||||
|
29.68 & 1.06 & \numrange{2602}{2608} &2563\\
|
||||||
|
29.96 & 1.07 & \numrange{2633}{2637} &2030\\
|
||||||
|
30.24 & 1.08 & \numrange{2614}{2621} &3232\\
|
||||||
|
30.52 & 1.09 & \numrange{2808}{2813} &2120\\
|
||||||
|
30.80 & 1.10 & \numrange{2625}{2632} &3234\\
|
||||||
|
31.36 & 1.12 & \numrange{2784}{2792} &2841\\
|
||||||
|
\bottomrule
|
||||||
|
\end{tabular}
|
||||||
|
\end{center}
|
||||||
|
\caption{Momentum scanning runs for the 100-\si{\um} aluminium target.}
|
||||||
|
\label{tab:al100_scan}
|
||||||
|
\end{table}
|
||||||
|
The on-site quick analysis suggested the 1.09 scaling factor was the
|
||||||
|
optimal value so it was chosen for all the runs on this aluminium target. But
|
||||||
|
the offline analysis later showed that the actual optimal factor was 1.08.
|
||||||
|
There were two reasons for the mistake:
|
||||||
|
\begin{enumerate}
|
||||||
|
\item the X-ray rates were normalised to run length, which is biased
|
||||||
|
since there are more muons available at higher momentum;
|
||||||
|
\item the $(2p-1s)$ peaks of aluminium at \SI{346.828}{\keV} were not
|
||||||
|
fitted properly. The peak is interfered by a background peak at
|
||||||
|
\SI{351}{\keV} from $^{214}$Pb, but the X-ray peak area was
|
||||||
|
obtained simply by subtracting an automatically estimated background.
|
||||||
|
\end{enumerate}
|
||||||
|
In the offline analysis, the X-ray peak and the background peak are fitted by
|
||||||
|
two Gaussian peaks on top of a first-order polynomial background. The X-ray peak
|
||||||
|
area is then normalised to the number of muons hitting the upstream detector
|
||||||
|
(\cref{fig:al100_xray_fit}).
|
||||||
|
\begin{figure}[htb]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.47\textwidth]{figs/al100_xray_fit}
|
||||||
|
\includegraphics[width=0.47\textwidth]{figs/al100_xray_musc}
|
||||||
|
\caption{Fitting of the $(2p-1s)$ muonic X-ray of aluminium and the background
|
||||||
|
peak at \SI{351}{\keV} (left). The number of muons is integral of the
|
||||||
|
upstream scintillator spectrum (right) from \numrange{400}{2000} ADC
|
||||||
|
channels.}
|
||||||
|
\label{fig:al100_xray_fit}
|
||||||
|
\end{figure}
|
||||||
|
The ratio between the number of X-rays and the number of muons as a function
|
||||||
|
of momentum scaling factor is plotted on \cref{fig:al100_scan_rate}. The trend
|
||||||
|
showed that muons penetrated deeper as the momentum increased, reaching the
|
||||||
|
optimal value at the scale of 1.08, then decreased as punch through happened
|
||||||
|
more often from 1.09. The distributions of stopped muons are illustrated by
|
||||||
|
MC results on \cref{fig:al100_mu_stop_mc}. With the 1.09 scale beam, the muons
|
||||||
|
stopped \SI{28}{\um} off-centre to the right silicon arm.
|
||||||
|
\begin{figure}[htb]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.85\textwidth]{figs/al100_scan_rate}
|
||||||
|
\caption{Number of X-rays per incoming muon as a function of momentum
|
||||||
|
scaling factor.}
|
||||||
|
\label{fig:al100_scan_rate}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\subsection{Event selection for the passive targets}
|
||||||
|
\label{sub:event_selection_for_the_passive_targets}
|
||||||
|
As described in the \cref{sec:analysis_framework}, the hits on all detectors
|
||||||
|
are re-organised into muon events: central muons; and all hits within
|
||||||
|
\SI{\pm 10}{\us} from the central muons. The dataset from runs
|
||||||
|
\numrange{2808}{2873} contains \num{1.17E+9} such muon events.
|
||||||
|
|
||||||
|
Selection of proton (and other heavy charged particles) events starts from
|
||||||
|
searching for muon event that has at least one hit on thick silicon. If there
|
||||||
|
is a thin silicon hit within a coincidence window of $\pm 0.5$~\si{\us}\ around
|
||||||
|
the thick silicon hit, the two hits are considered to belong to one particle.
|
||||||
|
The specific energy loss spectra recorded by the two silicon arms are plotted
|
||||||
|
on \cref{fig:al100_dedx}.
|
||||||
|
\begin{figure}[htb]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.85\textwidth]{figs/al100_dedx}
|
||||||
|
\caption{Energy loss in thin silicon detectors as a function of total energy
|
||||||
|
recorded by both thin and thick detectors.}
|
||||||
|
\label{fig:al100_dedx}
|
||||||
|
\end{figure}
|
||||||
|
With the aid from MC study (\cref{fig:pid_sim}), the banding on
|
||||||
|
\cref{fig:al100_dedx} can be identified as follows:
|
||||||
|
\begin{itemize}
|
||||||
|
\item the densest spot at the lower left conner belonged to electron hits;
|
||||||
|
\item the small blurry cloud just above the electron region was muon hits;
|
||||||
|
\item the most intense band was due to proton hits;
|
||||||
|
\item the less intense, upper band caused by deuteron hits;
|
||||||
|
\item the highest band corresponded to alpha hits;
|
||||||
|
\item the faint stripe above the deuteron band should be triton
|
||||||
|
hits, which is consistent with a relatively low probability of emission of
|
||||||
|
tritons.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
The band of protons is then extracted by cut on likelihood probability
|
||||||
|
calculated as:
|
||||||
|
\begin{equation}
|
||||||
|
p_{i} = \dfrac{1}{\sqrt{2\pi}\sigma_{\Delta E}}
|
||||||
|
e^{\frac{(\Delta E_{meas.} - \Delta E_i)^2} {2\sigma^2_{\Delta E}}}
|
||||||
|
\end{equation}
|
||||||
|
where $\Delta E_{\textrm{meas.}}$ is measured energy deposition in the thin
|
||||||
|
silicon detector by a certain proton at energy $E_i$, $\Delta E_i$ and
|
||||||
|
$\sigma_{\Delta E}$ are the expected and standard deviation of the energy loss
|
||||||
|
caused by the proton calculated by MC. A cut value of $3\sigma_{\Delta E}$, or
|
||||||
|
$p_i \ge 0.011$, was used to extract protons (\cref{fig:al100_protons}).
|
||||||
|
\begin{figure}[htb]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.47\textwidth]{figs/al100_protons}
|
||||||
|
\includegraphics[width=0.47\textwidth]{figs/al100_protons_px_r}
|
||||||
|
\caption{Protons (green) selected using the likelihood probability cut
|
||||||
|
(left). The proton spectrum (right) is obtained by projecting the proton
|
||||||
|
band onto the total energy axis.}
|
||||||
|
\label{fig:al100_protons}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\section{Proton emission rate from aluminium}
|
||||||
|
\label{sec:proton_emission_rate_from_aluminium}
|
||||||
|
The analysis is done on the same dataset used in
|
||||||
|
\cref{sec:particle_identification_by_specific_energy_loss}. Firstly, the
|
||||||
|
number of protons emitted is extracted using specific energy loss. Then
|
||||||
|
correction for energy loss inside the target is applied. Finally, the number
|
||||||
|
of protons is normalised to the number of nuclear muon captures.
|
||||||
|
|
||||||
|
\subsection{Number of protons emitted}
|
||||||
|
\label{sub:number_of_protons_emitted}
|
||||||
|
From the particle identification above, number of protons having energy in the
|
||||||
|
range from \SIrange{2.2}{8.5}{\MeV} hitting the two arms are:
|
||||||
|
\begin{align}
|
||||||
|
N_{\textrm{p meas. left}} = 1789 \pm 42.3\\
|
||||||
|
N_{\textrm{p meas. right}} = 2285 \pm 47.8
|
||||||
|
\end{align}
|
||||||
|
The right arm received significantly more protons than the left arm did, which
|
||||||
|
is expected because in \cref{sub:momentum_scan_for_the_100_} it is shown that
|
||||||
|
muons stopped off centre to the right arm.
|
||||||
|
|
||||||
|
The uncertainties are statistical only. The systematic uncertainties due to
|
||||||
|
the cut on protons is estimated to be small compared to the statistical ones.
|
||||||
|
|
||||||
|
\subsection{Corrections for the number of protons}
|
||||||
|
\label{sub:corrections_for_the_number_of_protons}
|
||||||
|
The protons spectra observed by the silicon detectors have been modified by
|
||||||
|
the energy loss inside the target so correction (or unfolding) is necessary.
|
||||||
|
In the unfolding process, a response function that relates proton's true energy
|
||||||
|
and the measured one is needed.
|
||||||
|
|
||||||
|
The response function is
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
%\section{Charged particles following muon capture on a thick silicon target}
|
||||||
|
%\label{sec:charged_particles_from_muon_capture_on_silicon_thick_silicon}
|
||||||
|
|
||||||
|
%Firstly, the number of charged particles emitted after nuclear muon capture on
|
||||||
|
%the active target is calculated. The charged particles yield then is normalised
|
||||||
|
%to the number of nuclear muon capture to obtain an emission rate.
|
||||||
|
%Finally, the
|
||||||
|
%rate is compared with that from the literature.
|
||||||
|
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
%\subsection{Number of charged particles with energy above \SI{3}{\MeV}}
|
||||||
|
%\label{sub:number_of_charged_particles_with_energy_from_8_10_mev}
|
||||||
|
%As shown in \cref{fig:sir2_1us_slices} and illustrated by MC simulation
|
||||||
|
%in \cref{fig:sir2_mc_pdfs}, there are several components in
|
||||||
|
%the energy spectrum recorded by the active target:
|
||||||
|
%\begin{enumerate}
|
||||||
|
%\item charged particles from nuclear muon capture, this is the signal of
|
||||||
|
%interest;
|
||||||
|
%\item beam electrons with a characteristic Landau peak around \SI{800}{\keV},
|
||||||
|
%dominating at large delay (from \SI{6500}{\ns}), causing background at
|
||||||
|
%energy lower than \SI{1}{\MeV} which drops sharply at energy larger than
|
||||||
|
%\SI{3}{\MeV};
|
||||||
|
%\item electrons from muon decay-in-orbit (DIO) and recoiled nuclei
|
||||||
|
%from neutron emitting muon captures, peak at
|
||||||
|
%around \SI{300}{\keV}, dominate the region where energy smaller than
|
||||||
|
%\SI{1}{\MeV} and delay less than \SI{3500}{\ns}. This component is
|
||||||
|
%intrinsic background, having the same time structure as that of the signal;
|
||||||
|
%\item stray muons scattered into the target, this component is small compares
|
||||||
|
%to the charged particles yield so it is not considered further.
|
||||||
|
%\end{enumerate}
|
||||||
|
%\begin{figure}[htb]
|
||||||
|
%\centering
|
||||||
|
%\includegraphics[width=0.45\textwidth]{figs/sir2_meas_spec}
|
||||||
|
%\includegraphics[width=0.45\textwidth]{figs/sir2_mc_pdfs}
|
||||||
|
%\caption{The observed spectrum in the timing window 1300 -- 10000~ns (left)
|
||||||
|
%and its components from MC simulation (right). The charged particles
|
||||||
|
%spectrum is obtained assuming the spectrum shape and emission rate from
|
||||||
|
%Sobottka and Wills~\cite{SobottkaWills.1968}. The relative scales between
|
||||||
|
%components are arbitrarily chosen for the purpose of illustration.}
|
||||||
|
%\label{fig:sir2_mc_pdfs}
|
||||||
|
%\end{figure}
|
||||||
|
|
||||||
|
%An energy cut at \SI{2}{\MeV} is introduced to avoid the domination of the
|
||||||
|
%beam electrons at low energy. In order to obtain the yields of backgrounds
|
||||||
|
%above \SI{2}{\MeV}, a binned maximum likelihood fit was done. The likelihood of
|
||||||
|
%getting the measured spectrum is defined as:
|
||||||
|
%\begin{equation}
|
||||||
|
%L = \frac{e^{-\mu}\mu^n}{n!}\prod_i \frac{\mu_i^{n_i} e^{-\mu_i}}{n_i!}
|
||||||
|
%\label{eqn:llh_def}
|
||||||
|
%\end{equation}
|
||||||
|
%where $n$ is the total number of events observed, $\mu$ is the expected number
|
||||||
|
%of events according to some linear combination of the signal and the
|
||||||
|
%backgrounds shown in~\ref{fig:sir2_mc_pdfs}, namely:
|
||||||
|
%\begin{align}
|
||||||
|
%n &= n_{\textrm{sig}} + n_{\textrm{beam e}} + n_{\textrm{dio}}\\
|
||||||
|
%\textrm{(sum pdf)} &= n_{\textrm{sig}}\times\textrm{(sig pdf)} +
|
||||||
|
%n_{\textrm{beam e}}\times\textrm{(beam e pdf)} +
|
||||||
|
%n_{\textrm{dio}}\times\textrm{(dio pdf)};
|
||||||
|
%\label{eqn:sum_pdf}
|
||||||
|
%\end{align}
|
||||||
|
%and the $i$ index indicates the respective number of events in the $i$-th
|
||||||
|
%bin.
|
||||||
|
|
||||||
|
%The fit is done by the RooFit package~\cite{VerkerkeKirkby.2003} where the
|
||||||
|
%negative log likelihood $-2\ln{L}$ is minimised. Fitting results are shown
|
||||||
|
%in~\ref{fig:sir2_mll_fit}, the yields of backgrounds and signal are:
|
||||||
|
%\begin{align}
|
||||||
|
%n_{\textrm{beam e}} &= 23756 \pm 581\\
|
||||||
|
%n_{\textrm{dio}} &= 111340 \pm 1245\\
|
||||||
|
%n_{\textrm{sig}} &= 2.57 \pm 856
|
||||||
|
%\label{eqn:sir2_n_chargedparticles}
|
||||||
|
%\end{align}
|
||||||
|
%\begin{figure}[htb]
|
||||||
|
%\centering
|
||||||
|
%\includegraphics[width=0.42\textwidth]{figs/sir2_mllfit_nbkg}
|
||||||
|
%\includegraphics[width=0.42\textwidth]{figs/sir2_mllfit_nebeam}
|
||||||
|
%\includegraphics[width=0.84\textwidth]{figs/sir2_mllfit}
|
||||||
|
%\caption{Results of the maximum likelihood fit of the energy spectrum on the
|
||||||
|
%active target.}
|
||||||
|
%\label{fig:sir2_mll_fit}
|
||||||
|
%\end{figure}
|
||||||
|
|
||||||
|
% subsection number_of_charged_particles_with_energy_from_8_10_mev (end)
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
%\subsection{Number of nuclear muon captures}
|
||||||
|
%\label{sub:number_of_stopped_muons}
|
||||||
|
|
||||||
%The area of the $(2p-1s)$ peak is $N_{(2p-1s)} = 2981.5 \pm 65.6$,
|
%The area of the $(2p-1s)$ peak is $N_{(2p-1s)} = 2981.5 \pm 65.6$,
|
||||||
%obtained by subtracting the background of 101.5 from the spectral integral of
|
%obtained by subtracting the background of 101.5 from the spectral integral of
|
||||||
%2083 in the region from 396 to 402 keV.
|
%2083 in the region from 396 to 402 keV.
|
||||||
%The area of the $(2p-1s)$ peak is $2929.7 \pm 56.4$ obtained by fitting
|
%The area of the $(2p-1s)$ peak is $2929.7 \pm 56.4$ obtained by fitting
|
||||||
%a Gaussian peak on top of a first-order polynomial background to the spectrum
|
%a Gaussian peak on top of a first-order polynomial background to the spectrum
|
||||||
%in \cref{fgi:sir2_xray} in the region from \SIrange{395}{405}{\keV}.
|
%in \cref{fgi:sir2_xray} in the region from \SIrange{395}{405}{\keV}.
|
||||||
Using the same procedure of fitting and correcting described in
|
|
||||||
\cref{sub:germanium_detector}, the number of X-rays is calculated to be 370.
|
|
||||||
Details of the correction factors are given in \cref{tab:sir2_xray_corr}.
|
|
||||||
\begin{table}[htb]
|
|
||||||
\begin{center}
|
|
||||||
\begin{tabular}{l}
|
|
||||||
\toprule
|
|
||||||
\textbf{Col1}\\
|
|
||||||
\midrule
|
|
||||||
item1\\
|
|
||||||
\bottomrule
|
|
||||||
\end{tabular}
|
|
||||||
\end{center}
|
|
||||||
\caption{Corrections for the number of X-rays from the active target.}
|
|
||||||
\label{tab:sir2_xray_corr}
|
|
||||||
\end{table}
|
|
||||||
|
|
||||||
The X-ray intensity in \cref{tab:mucap_pars} was normalised to the number of
|
%The X-ray intensity in \cref{tab:mucap_pars} was normalised to the number of
|
||||||
stopped muons, so the number of stopped muons is:
|
%stopped muons, so the number of stopped muons is:
|
||||||
|
|
||||||
\begin{align}
|
%\begin{align}
|
||||||
N_{\mu\textrm{ stopped}} &=
|
%N_{\mu\textrm{ stopped}} &=
|
||||||
\dfrac{N_{(2p-1s)}}{\epsilon_{2p-1s}\times I_{(2p-1s)}}\nonumber\\
|
%\dfrac{N_{(2p-1s)}}{\epsilon_{2p-1s}\times I_{(2p-1s)}}\nonumber\\
|
||||||
&= \dfrac{370}{4.38\times10^{-4} \times 0.803} \\
|
%&= \dfrac{370}{4.38\times10^{-4} \times 0.803} \\
|
||||||
&= 1.05\times10^6 \nonumber
|
%&= 1.05\times10^6 \nonumber
|
||||||
\end{align}
|
%\end{align}
|
||||||
where $\epsilon_{(2p-1s)}$ is the calibrated absolute efficiency of the
|
%where $\epsilon_{(2p-1s)}$ is the calibrated absolute efficiency of the
|
||||||
detector for the 400.177~keV line in \cref{tab:xray_eff}, and
|
%detector for the 400.177~keV line in \cref{tab:xray_eff}, and
|
||||||
$I_{(2p-1s)}$ is the probability of emitting this X-ray per stopped muon
|
%$I_{(2p-1s)}$ is the probability of emitting this X-ray per stopped muon
|
||||||
(80.3\% from \cref{tab:mucap_pars}).
|
%(80.3\% from \cref{tab:mucap_pars}).
|
||||||
|
|
||||||
Taking the statistical uncertainty of the peak area, and systematic
|
%Taking the statistical uncertainty of the peak area, and systematic
|
||||||
uncertainties from parameters of muon capture, the number of stopped muons
|
%uncertainties from parameters of muon capture, the number of stopped muons
|
||||||
calculated from the X-ray measurement is
|
%calculated from the X-ray measurement is
|
||||||
$(10.50 \pm 0.65)\times 10^5$. This figure is consistent with the number of
|
%$(10.50 \pm 0.65)\times 10^5$. This figure is consistent with the number of
|
||||||
stopped muons of $9.82\times10^5$ after the cuts described in the event
|
%stopped muons of $9.82\times10^5$ after the cuts described in the event
|
||||||
selection process.
|
%selection process.
|
||||||
|
|
||||||
The number of nuclear captured muons is:
|
%The number of nuclear captured muons is:
|
||||||
\begin{equation}
|
%\begin{equation}
|
||||||
N_{\mu\textrm{ nucl.capture}} =
|
%N_{\mu\textrm{ nucl.capture}} =
|
||||||
N_{\mu\textrm{ stopped}}\times f_{\textrm{cap.Si}}
|
%N_{\mu\textrm{ stopped}}\times f_{\textrm{cap.Si}}
|
||||||
= 10.05 \times 10^5 \times 0.658 = 6.91 \times 10^5
|
%= 10.05 \times 10^5 \times 0.658 = 6.91 \times 10^5
|
||||||
\label{eqn:sir2_Ncapture}
|
%\label{eqn:sir2_Ncapture}
|
||||||
\end{equation}
|
%\end{equation}
|
||||||
where the $f_{\textrm{cap.Si}}$ is the probability of nuclear capture per
|
%where the $f_{\textrm{cap.Si}}$ is the probability of nuclear capture per
|
||||||
stopped muon from \cref{tab:mucap_pars}.
|
%stopped muon from \cref{tab:mucap_pars}.
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\subsection{Emission rate of charged particles}
|
%\subsection{Emission rate of charged particles}
|
||||||
\label{sub:emission_rate_of_charged_particles}
|
%\label{sub:emission_rate_of_charged_particles}
|
||||||
The emission rate of charged particles is calculated by taking the ratio of
|
%The emission rate of charged particles is calculated by taking the ratio of
|
||||||
number of charged particles in ~\eqref{eqn:sir2_Nchargedparticle} and number of
|
%number of charged particles in ~\eqref{eqn:sir2_Nchargedparticle} and number of
|
||||||
nuclear muon capture in~\eqref{eqn:sir2_Ncapture}:
|
%nuclear muon capture in~\eqref{eqn:sir2_Ncapture}:
|
||||||
\begin{equation}
|
%\begin{equation}
|
||||||
R_{\textrm{Si}} = \frac{N_{\textrm{charged particle}}}{N_{\mu\textrm{ nucl.capture}}}
|
%R_{\textrm{Si}} = \frac{N_{\textrm{charged particle}}}{N_{\mu\textrm{ nucl.capture}}}
|
||||||
= \frac{149.9\times10^4}{7.25\times10^6} = 0.252
|
%= \frac{149.9\times10^4}{7.25\times10^6} = 0.252
|
||||||
\end{equation}
|
%\end{equation}
|
||||||
Uncertainties of this rate calculation are listed in
|
%Uncertainties of this rate calculation are listed in
|
||||||
\cref{tab:sir2_uncertainties}, including:
|
%\cref{tab:sir2_uncertainties}, including:
|
||||||
\begin{itemize}
|
%\begin{itemize}
|
||||||
\item uncertainties from number of charged particles, both statistical and
|
%\item uncertainties from number of charged particles, both statistical and
|
||||||
systematic (from spectrum shape and fitting) ones are absorbed in the
|
%systematic (from spectrum shape and fitting) ones are absorbed in the
|
||||||
quoted value in~\eqref{sir2_Nchargedparticle};
|
%quoted value in~\eqref{sir2_Nchargedparticle};
|
||||||
\item uncertainties from number of nuclear capture:
|
%\item uncertainties from number of nuclear capture:
|
||||||
\begin{itemize}
|
%\begin{itemize}
|
||||||
\item statistical error of the peak area calculation,
|
%\item statistical error of the peak area calculation,
|
||||||
\item systematic errors from the efficiency calibration, and referenced
|
%\item systematic errors from the efficiency calibration, and referenced
|
||||||
values of X-ray intensity and capture probability.
|
%values of X-ray intensity and capture probability.
|
||||||
\end{itemize}
|
%\end{itemize}
|
||||||
\end{itemize}
|
%\end{itemize}
|
||||||
So, the emission rate is:
|
%So, the emission rate is:
|
||||||
\begin{equation}
|
%\begin{equation}
|
||||||
R_{\textrm{Si}} = 0.252 \pm 0.009
|
%R_{\textrm{Si}} = 0.252 \pm 0.009
|
||||||
\label{eqn:sir2_rate_cal}
|
%\label{eqn:sir2_rate_cal}
|
||||||
\end{equation}
|
%\end{equation}
|
||||||
|
|
||||||
\begin{table}[htb]
|
%\begin{table}[htb]
|
||||||
\begin{center}
|
%\begin{center}
|
||||||
\begin{tabular}{l l l}
|
%\begin{tabular}{l l l}
|
||||||
\toprule
|
%\toprule
|
||||||
%\textbf{Source} & \textbf{Type} & \textbf{Relative error}\\
|
%Number of charged particles & &\\
|
||||||
Number of charged particles & &\\
|
%Statistical and systematic & &0.004\\
|
||||||
Statistical and systematic & &0.004\\
|
%\midrule
|
||||||
\midrule
|
%Number of nuclear capture & &\\
|
||||||
Number of nuclear capture & &\\
|
%Statistical & Peak area calculation& 0.022\\
|
||||||
Statistical & Peak area calculation& 0.022\\
|
%Systematic & Efficiency calibration & 0.024\\
|
||||||
Systematic & Efficiency calibration & 0.024\\
|
%& X-ray intensity & 0.009\\
|
||||||
& X-ray intensity & 0.009\\
|
%& Capture probability & 0\\
|
||||||
& Capture probability & 0\\
|
|
||||||
|
|
||||||
\midrule
|
%\midrule
|
||||||
Total relative error & & 0.035\\
|
%Total relative error & & 0.035\\
|
||||||
Total absolute error & & 0.009\\
|
%Total absolute error & & 0.009\\
|
||||||
|
|
||||||
\bottomrule
|
%\bottomrule
|
||||||
\end{tabular}
|
%\end{tabular}
|
||||||
\end{center}
|
%\end{center}
|
||||||
\caption{Uncertainties of the emission rate from the thick silicon target}
|
%\caption{Uncertainties of the emission rate from the thick silicon target}
|
||||||
\label{tab:sir2_uncertainties}
|
%\label{tab:sir2_uncertainties}
|
||||||
\end{table}
|
%\end{table}
|
||||||
|
|
||||||
% subsection partial_emission_rate_of_charged_particle_in_8_10_mev_range (end)
|
% subsection partial_emission_rate_of_charged_particle_in_8_10_mev_range (end)
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|||||||
BIN
thesis/figs/sir2_ges_self_tdiff.png
Normal file
BIN
thesis/figs/sir2_ges_self_tdiff.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 237 KiB |
@@ -32,8 +32,8 @@ for the COMET experiment}
|
|||||||
%\input{chapters/chap1_intro}
|
%\input{chapters/chap1_intro}
|
||||||
%\input{chapters/chap2_mu_e_conv}
|
%\input{chapters/chap2_mu_e_conv}
|
||||||
%\input{chapters/chap3_comet}
|
%\input{chapters/chap3_comet}
|
||||||
\input{chapters/chap4_alcap_phys}
|
%\input{chapters/chap4_alcap_phys}
|
||||||
\input{chapters/chap5_alcap_setup}
|
%\input{chapters/chap5_alcap_setup}
|
||||||
\input{chapters/chap6_analysis}
|
\input{chapters/chap6_analysis}
|
||||||
%\input{chapters/chap7_results}
|
%\input{chapters/chap7_results}
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user