prog saved
This commit is contained in:
@@ -337,13 +337,15 @@ The band of protons is then extracted by cut on likelihood probability
|
|||||||
calculated as:
|
calculated as:
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
p_{i} = \dfrac{1}{\sqrt{2\pi}\sigma_{\Delta E}}
|
p_{i} = \dfrac{1}{\sqrt{2\pi}\sigma_{\Delta E}}
|
||||||
e^{\frac{(\Delta E_{meas.} - \Delta E_i)^2} {2\sigma^2_{\Delta E}}}
|
\exp{\left[\dfrac{(\Delta E_{meas.} - \Delta E_i)^2} {2\sigma^2_{\Delta
|
||||||
|
E}}\right]}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where $\Delta E_{\textrm{meas.}}$ is measured energy deposition in the thin
|
where $\Delta E_{\textrm{meas.}}$ is energy deposition measured by the thin
|
||||||
silicon detector by a certain proton at energy $E_i$, $\Delta E_i$ and
|
silicon detector by a certain proton at energy $E_i$, $\Delta E_i$ and
|
||||||
$\sigma_{\Delta E}$ are the expected and standard deviation of the energy loss
|
$\sigma_{\Delta E}$ are the expected and standard deviation of the energy loss
|
||||||
caused by the proton calculated by MC. A cut value of $3\sigma_{\Delta E}$, or
|
caused by the proton calculated by MC study. A threshold is set to extract
|
||||||
$p_i \ge 0.011$, was used to extract protons (\cref{fig:al100_protons}).
|
protons at 0.011 (equivalent to $3\sigma_{\Delta E}$), the band of protons is
|
||||||
|
shown in (\cref{fig:al100_protons}).
|
||||||
\begin{figure}[htb]
|
\begin{figure}[htb]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.47\textwidth]{figs/al100_protons}
|
\includegraphics[width=0.47\textwidth]{figs/al100_protons}
|
||||||
@@ -354,6 +356,12 @@ $p_i \ge 0.011$, was used to extract protons (\cref{fig:al100_protons}).
|
|||||||
\label{fig:al100_protons}
|
\label{fig:al100_protons}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
|
The cut efficiency in the energy range from \SIrange{2}{12}{\MeV} is estimated
|
||||||
|
by MC study. The fraction of protons that do not satisfy the probability cut
|
||||||
|
is 0.5\%. The number of other charged particles that are misidentified as
|
||||||
|
protons depends on the ratios between those species and protons. Assuming
|
||||||
|
a proton:deuteron:triton:alpha:muon ratio of 5:2:1:2:2, the number of
|
||||||
|
misidentified hits is 0.1\% of the number of protons.
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\section{Proton emission rate from aluminium}
|
\section{Proton emission rate from aluminium}
|
||||||
\label{sec:proton_emission_rate_from_aluminium}
|
\label{sec:proton_emission_rate_from_aluminium}
|
||||||
@@ -365,25 +373,20 @@ of protons is normalised to the number of nuclear muon captures.
|
|||||||
|
|
||||||
\subsection{Number of protons emitted}
|
\subsection{Number of protons emitted}
|
||||||
\label{sub:number_of_protons_emitted}
|
\label{sub:number_of_protons_emitted}
|
||||||
From the particle identification above, number of protons having energy in the
|
The numbers of protons in the energy range from \SIrange{2.2}{8.5}{\MeV} after
|
||||||
range from \SIrange{2.2}{8.5}{\MeV} hitting the two arms are:
|
applying the probability cut are:
|
||||||
\begin{align}
|
\begin{align}
|
||||||
N_{\textrm{p meas. left}} = 1822 \pm 42.7\\
|
N_{\textrm{p meas. left}} = 1822\\% \pm 42.7\\
|
||||||
N_{\textrm{p meas. right}} = 2373 \pm 48.7
|
N_{\textrm{p meas. right}} = 2373% \pm 48.7
|
||||||
\end{align}
|
\end{align}
|
||||||
The right arm received significantly more protons than the left arm did, which
|
The right arm received significantly more protons than the left arm did, which
|
||||||
is expected as in \cref{sub:momentum_scan_for_the_100_} it is shown that
|
is expected as in \cref{sub:momentum_scan_for_the_100_} where it is shown that
|
||||||
muons stopped off centre to the right arm.
|
muons stopped off-centred to the right arm.
|
||||||
|
|
||||||
%%TODO
|
|
||||||
The uncertainties are statistical only. The systematic uncertainties due to
|
|
||||||
the cut on protons is estimated to be small compared to the statistical ones.
|
|
||||||
|
|
||||||
\subsection{Corrections for the number of protons}
|
\subsection{Corrections for the number of protons}
|
||||||
\label{sub:corrections_for_the_number_of_protons}
|
\label{sub:corrections_for_the_number_of_protons}
|
||||||
The protons spectra observed by the silicon detectors have been modified by
|
The protons spectra observed by the silicon detectors have been modified by
|
||||||
the energy loss inside the target so correction (also called unfolding, or
|
the energy loss inside the target so correction (or unfolding) is necessary.
|
||||||
reconstruction) is necessary.
|
|
||||||
The unfolding, essentially, is finding a response function that relates proton's
|
The unfolding, essentially, is finding a response function that relates proton's
|
||||||
true energy and measured value. This can be done in MC simulation by generating
|
true energy and measured value. This can be done in MC simulation by generating
|
||||||
protons with a spatial distribution as close as possible to the real
|
protons with a spatial distribution as close as possible to the real
|
||||||
@@ -413,28 +416,65 @@ method is implemented.
|
|||||||
\caption{Response functions for the two silicon arms.}
|
\caption{Response functions for the two silicon arms.}
|
||||||
\label{fig:al100_resp_matrices}
|
\label{fig:al100_resp_matrices}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
After training the unfolding code is applied on the measured spectra from the
|
%After training, the unfolding code is applied on the measured spectra from the
|
||||||
left and right arms. The unfolded proton spectra in \cref{fig:al100_unfold}
|
%left and right arms. The unfolded proton spectra in \cref{fig:al100_unfold}
|
||||||
reasonably reflect the distribution of initial protons which is off-centred to
|
%reasonably reflect the distribution of initial protons which is off-centred to
|
||||||
the right arm. The path length to the left arm is longer so less protons at
|
%the right arm. The path length to the left arm is longer so less protons at
|
||||||
energy lower than \SI{5}{\MeV} could reach the detectors. The sharp low-energy
|
%energy lower than \SI{5}{\MeV} could reach the detectors. The sharp low-energy
|
||||||
cut off on the right arm is consistent with the Coulomb barrier for protons,
|
%cut off on the right arm is consistent with the Coulomb barrier for protons,
|
||||||
which is \SI{4.1}{\MeV} for protons emitted from $^{27}$Mg.
|
%which is \SI{4.1}{\MeV} for protons emitted from $^{27}$Mg.
|
||||||
|
The unfolded spectra using the two observed spectra at the two arms as input
|
||||||
|
are shown in \cref{fig:al100_unfold}. The two unfolded spectra generally agree
|
||||||
|
with each other, except for a few first and last bins. The discrepancy and
|
||||||
|
large uncertainties at the low energy region are because of only a small
|
||||||
|
number of protons with those energies could reach the detectors. The jump on
|
||||||
|
the right arm at around \SI{9}{\MeV} can be explained as the punch-through
|
||||||
|
protons were counted as the proton veto counters were not used in this
|
||||||
|
analysis.
|
||||||
|
|
||||||
Comparing the reconstructed spectra from \SIrange{5}{8}{\MeV}, the protons
|
%Several studies were conducted to assess the performance of the unfolding
|
||||||
yields are consistent with each other:
|
%code, including:
|
||||||
|
%\begin{itemize}
|
||||||
|
%\item stability against cut-off energy;
|
||||||
|
%\item comparison between the two arms;
|
||||||
|
%\item and unfolding of a MC-generated spectrum.
|
||||||
|
%\end{itemize}
|
||||||
|
The stability of the unfolding code is tested by varying the lower cut-off
|
||||||
|
energy of the input spectrum. \cref{fig:al100_cutoff_study} show that the
|
||||||
|
shapes of the unfolded spectra are stable. The lower cut-off energy of the
|
||||||
|
output increases as that of the input increases, and the shape is generally
|
||||||
|
unchanged after a few bins.
|
||||||
|
\begin{figure}[htb]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.85\textwidth]{figs/al100_cutoff_study}
|
||||||
|
\caption{Unfolded spectra with different cut-off energies.}
|
||||||
|
\label{fig:al100_cutoff_study}
|
||||||
|
\end{figure}
|
||||||
|
The proton yields calculated from observed spectra in two arms are compared in
|
||||||
|
\cref{fig:al100_integral_comparison} where the upper limit of the integrals
|
||||||
|
is fixed at \SI{8}{\MeV}, and the lower limit is varied in \SI{400}{\keV} step.
|
||||||
|
The difference is large at cut-off energies less than \SI{4}{\MeV} due to
|
||||||
|
large uncertainties at the first bins. Above \SI{4}{\MeV}, the two arms show
|
||||||
|
consistent numbers of protons.
|
||||||
|
\begin{figure}[htb]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.85\textwidth]{figs/al100_integral_comparison}
|
||||||
|
\caption{Proton yields calculated from two arms.}
|
||||||
|
\label{fig:al100_integral_comparison}
|
||||||
|
\end{figure}
|
||||||
|
The yields of protons from \SIrange{4}{8}{\MeV} are:
|
||||||
\begin{align}
|
\begin{align}
|
||||||
N_{\textrm{p reco. left}} &= (110.9 \pm 2.0)\times 10^3\\
|
N_{\textrm{p unfold left}} &= (165.4 \pm 2.7)\times 10^3\\
|
||||||
N_{\textrm{p reco. right}} &= (110.2 \pm 2.3)\times 10^3
|
N_{\textrm{p unfold right}} &= (173.1 \pm 2.9)\times 10^3
|
||||||
\end{align}
|
\end{align}
|
||||||
Therefore, the number of emitted protons is taken as average value:
|
Therefore, the number of emitted protons is taken as average value:
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
N_{\textrm{p reco.}} = (110.6 \pm 2.2) \times 10^3
|
N_{\textrm{p unfold}} = (169.3 \pm 2.9) \times 10^3
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\begin{figure}[htb]
|
\begin{figure}[htb]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.85\textwidth]{figs/al100_unfold}
|
\includegraphics[width=0.85\textwidth]{figs/al100_unfolded_lr}
|
||||||
\caption{Unfolded proton spectra from the 100-\si{\um} aluminium target.}
|
\caption{Unfolded proton spectra from the 100-\si{\um} aluminium target.}
|
||||||
\label{fig:al100_unfold}
|
\label{fig:al100_unfold}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@@ -458,29 +498,84 @@ the number of nuclear captures are:
|
|||||||
N_{\mu \textrm{ stopped}} &= (1.57 \pm 0.05)\times 10^7\\
|
N_{\mu \textrm{ stopped}} &= (1.57 \pm 0.05)\times 10^7\\
|
||||||
N_{\mu \textrm{ nucl. cap.}} &= (9.57\pm 0.31)\times 10^6
|
N_{\mu \textrm{ nucl. cap.}} &= (9.57\pm 0.31)\times 10^6
|
||||||
\end{align}
|
\end{align}
|
||||||
The proton emission rate in the range from \SIrange{5}{8}{\MeV} is therefore:
|
|
||||||
|
\subsection{Proton emission rate}
|
||||||
|
\label{sub:proton_emission_rate}
|
||||||
|
The proton emission rate in the range from \SIrange{4}{8}{\MeV} is therefore:
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
R_{\textrm{p}} = \frac{110.6\times 10^3}{9.57\times 10^6} = 1.16\times
|
R_{\textrm{p}} = \frac{169.3\times 10^3}{9.57\times 10^6} = 1.74\times
|
||||||
10^{-2}
|
10^{-2}
|
||||||
\label{eq:proton_rate_al}
|
\label{eq:proton_rate_al}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
%\subsection{Uncertainties of the emission rate}
|
The total proton emission rate can be estimated by assuming a spectrum shape
|
||||||
%\label{sub:uncertainties_of_the_emission_rate}
|
with the same parameterisation as in \eqref{eqn:EH_pdf}. The fit parameters
|
||||||
%The uncertainties of the emission rate come from:
|
are shown in . With such parameterisation, the integration in
|
||||||
%\begin{itemize}
|
range from \SIrange{4}{8}{\MeV} is 51\% of the total number of protons. The
|
||||||
%\item uncertainties in the number of protons:
|
total proton emission rate is therefore $3.5\times 10^{-2}$.
|
||||||
%\begin{itemize}
|
|
||||||
%\item statistical uncertainty of the measured spectra;
|
|
||||||
%\item systematic uncertainty due to misidentification;
|
|
||||||
%\item systematic uncertainty from the unfolding
|
|
||||||
%\end{itemize}
|
|
||||||
%\item uncertainties in the number of nuclear captures:
|
|
||||||
%\begin{itemize}
|
|
||||||
%\item statistical uncertainty of the number of X-rays;
|
|
||||||
%\item uncertainty of the detector acceptance;
|
|
||||||
%\item uncertainty from the corrections: random summing and transistor
|
|
||||||
%reset amplifier
|
|
||||||
%\end{itemize}
|
|
||||||
%\end{itemize}
|
|
||||||
|
|
||||||
|
\subsection{Uncertainties of the emission rate}
|
||||||
|
\label{sub:uncertainties_of_the_emission_rate}
|
||||||
|
The uncertainties of the emission rate come from:
|
||||||
|
\begin{itemize}
|
||||||
|
\item uncertainties in the number of nuclear captures: these were discussed
|
||||||
|
in \cref{sub:number_of_stopped_muons_from_the_number_of_x_rays};
|
||||||
|
\item uncertainties in the number of protons:
|
||||||
|
\begin{itemize}
|
||||||
|
\item statistical uncertainties of the measured spectra which are
|
||||||
|
propagated during the unfolding process;
|
||||||
|
\item systematic uncertainties due to misidentification: this number is
|
||||||
|
small compared to other uncertainties as discussed in
|
||||||
|
\cref{sub:event_selection_for_the_passive_targets};
|
||||||
|
\item systematic uncertainty from the unfolding
|
||||||
|
\end{itemize}
|
||||||
|
\end{itemize}
|
||||||
|
The last item is studied by MC method using the parameterisation in
|
||||||
|
\cref{sub:proton_emission_rate}:
|
||||||
|
\begin{itemize}
|
||||||
|
\item protons with energy distribution obeying the parameterisation are
|
||||||
|
generated inside the target. The spatial distribution is the same as that
|
||||||
|
of in \cref{sub:corrections_for_the_number_of_protons}. MC truth including
|
||||||
|
initial energies and positions are recorded;
|
||||||
|
\item the number of protons reaching the silicon detectors are counted,
|
||||||
|
the proton yield is set to be the same as the measured yield to make the
|
||||||
|
statistical uncertainties comparable;
|
||||||
|
\item the unfolding is applied on the observed proton spectra, and the
|
||||||
|
results are compared with the MC truth.
|
||||||
|
\end{itemize}
|
||||||
|
\begin{figure}[htb]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.48\textwidth]{figs/al100_MCvsUnfold}
|
||||||
|
\includegraphics[width=0.48\textwidth]{figs/al100_unfold_truth_ratio}
|
||||||
|
\caption{Comparison between an unfolded spectrum and MC truth: spectra
|
||||||
|
(left), and yields (right). The ratio is defined as $\textrm{(Unfold - MC
|
||||||
|
truth)/(MC truth)}$}
|
||||||
|
\label{fig:al100_MCvsUnfold}
|
||||||
|
\end{figure}
|
||||||
|
\Cref{fig:al100_MCvsUnfold} shows that the yield obtained after unfolding is
|
||||||
|
in agreement with that from the MC truth. The difference is less than 5\% if
|
||||||
|
the integration is taken in the range from \SIrange{4}{8}{\MeV}. Therefore
|
||||||
|
a systematic uncertainty of 5\% is assigned for the unfolding routine.
|
||||||
|
|
||||||
|
A summary of uncertainties in the measurement of proton emission rate is
|
||||||
|
presented in \cref{tab:al100_uncertainties_all}.
|
||||||
|
\begin{table}[htb]
|
||||||
|
\begin{center}
|
||||||
|
\begin{tabular}{@{}ll@{}}
|
||||||
|
\toprule
|
||||||
|
\textbf{Item}& \textbf{Value} \\
|
||||||
|
\midrule
|
||||||
|
Number of muons & 3.2\% \\
|
||||||
|
Statistical from measured spectra & 1.6\% \\
|
||||||
|
Systematic from unfolding & 5.0\% \\
|
||||||
|
Systematic from PID & \textless0.5\% \\
|
||||||
|
\midrule
|
||||||
|
Total & 6.1\%\\
|
||||||
|
\bottomrule
|
||||||
|
\end{tabular}
|
||||||
|
\end{center}
|
||||||
|
\caption{Uncertainties of the proton emission rate.}
|
||||||
|
\label{tab:al100_uncertainties_all}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
The proton emission rate is then $(3.5 \pm 0.2)$\%.
|
||||||
|
|||||||
Binary file not shown.
@@ -119,6 +119,7 @@
|
|||||||
Year = {2003},
|
Year = {2003},
|
||||||
Pages = {250-303},
|
Pages = {250-303},
|
||||||
Volume = {A506},
|
Volume = {A506},
|
||||||
|
|
||||||
Collaboration = {GEANT4},
|
Collaboration = {GEANT4},
|
||||||
Doi = {10.1016/S0168-9002(03)01368-8},
|
Doi = {10.1016/S0168-9002(03)01368-8},
|
||||||
Owner = {NT},
|
Owner = {NT},
|
||||||
@@ -322,6 +323,23 @@
|
|||||||
Timestamp = {2014-05-02}
|
Timestamp = {2014-05-02}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Article{AudiWapstra.etal.2003,
|
||||||
|
Title = {The Ame2003 atomic mass evaluation: (II). Tables, graphs and references },
|
||||||
|
Author = {G. Audi and A.H. Wapstra and C. Thibault},
|
||||||
|
Journal = {Nuclear Physics A },
|
||||||
|
Year = {2003},
|
||||||
|
Note = {The 2003 \{NUBASE\} and Atomic Mass Evaluations },
|
||||||
|
Number = {1},
|
||||||
|
Pages = {337 - 676},
|
||||||
|
Volume = {729},
|
||||||
|
|
||||||
|
Doi = {http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003},
|
||||||
|
ISSN = {0375-9474},
|
||||||
|
Owner = {NT},
|
||||||
|
Timestamp = {2014-10-26},
|
||||||
|
Url = {http://www.sciencedirect.com/science/article/pii/S0375947403018098}
|
||||||
|
}
|
||||||
|
|
||||||
@Article{BadertscherBorer.etal.1982,
|
@Article{BadertscherBorer.etal.1982,
|
||||||
Title = {A search for muon-electron and muon-positron conversion in sulfur},
|
Title = {A search for muon-electron and muon-positron conversion in sulfur},
|
||||||
Author = {Badertscher, A and Borer, K and Czapek, G and Fl{\"u}ckiger, A and H{\"a}nni, H and Hahn, B and Hugentobler, E and Markees, A and Marti, T and Moser, U and others},
|
Author = {Badertscher, A and Borer, K and Czapek, G and Fl{\"u}ckiger, A and H{\"a}nni, H and Hahn, B and Hugentobler, E and Markees, A and Marti, T and Moser, U and others},
|
||||||
@@ -485,6 +503,7 @@
|
|||||||
Number = {1},
|
Number = {1},
|
||||||
Pages = {154--197},
|
Pages = {154--197},
|
||||||
Volume = {562},
|
Volume = {562},
|
||||||
|
|
||||||
Doi = {10.1016/j.nima.2006.03.009},
|
Doi = {10.1016/j.nima.2006.03.009},
|
||||||
File = {Published version:Bichsel.2006.pdf:PDF},
|
File = {Published version:Bichsel.2006.pdf:PDF},
|
||||||
Owner = {NT},
|
Owner = {NT},
|
||||||
|
|||||||
@@ -29,13 +29,13 @@ for the COMET experiment}
|
|||||||
\end{frontmatter}
|
\end{frontmatter}
|
||||||
|
|
||||||
\mainmatter
|
\mainmatter
|
||||||
\input{chapters/chap1_intro}
|
%\input{chapters/chap1_intro}
|
||||||
\input{chapters/chap2_mu_e_conv}
|
%\input{chapters/chap2_mu_e_conv}
|
||||||
\input{chapters/chap3_comet}
|
%\input{chapters/chap3_comet}
|
||||||
\input{chapters/chap4_alcap_phys}
|
%\input{chapters/chap4_alcap_phys}
|
||||||
\input{chapters/chap5_alcap_setup}
|
%\input{chapters/chap5_alcap_setup}
|
||||||
\input{chapters/chap6_analysis}
|
\input{chapters/chap6_analysis}
|
||||||
\input{chapters/chap7_results}
|
%\input{chapters/chap7_results}
|
||||||
|
|
||||||
\begin{backmatter}
|
\begin{backmatter}
|
||||||
\input{chapters/backmatter}
|
\input{chapters/backmatter}
|
||||||
|
|||||||
Reference in New Issue
Block a user